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Executive Summary 

This deliverable summarizes the outcome of STREAM-0D Task 4.1 and is related to the development 

of Data Driven Models (DDMs) and their corresponding performance in detecting and preventing 

defects during production. Due to production issues and the installation of the reaction disc test rig, 

ZF has not been able to provide sets of data, including reaction disc characteristics, which are  needed 

to develop the DDMs for the booster application. ¢ƘŜ ŎǳǊǊŜƴǘ ǎǘŀǘŜ ƻŦ ½CΩǎ 55aǎ ƛǎ the one reported 

in Deliverable 3.2. The DDM for the ZF application will be further developed as soon as the respective 

data become available and it will be reported in a later deliverable. CETRI has developed and reported 

the DDM for the SP use case and ITAINNOVA has developed and reported the DDMs for the FERSA use 

case. STAM as WP leader has supervised the deliverable. 
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1 Introduction 

1.1 Purpose of the document 

This document describes the process of data acquisition, analysis and modelling for 2 use cases:  

 Rubber profile extrusion - STANDARD PROFIL (SP)  

 Grinding bearing ς FERSA bearings (FERSA) 

1.1.1 SP DDMs 

In this use case, images of individual rubber products were collected. The task involved processing 

multiple images, measuring the deviation in specific points of interest, between each product and a 

specification model and developing appropriate models to predict defective products based on 

product tolerances. Different approaches were considered for both the image processing part and the 

creation of data-driven models. The best approaches as a function of simplicity, speed and accuracy 

were further developed and the compilation results were examined. Finally, an additional analysis was 

performed, to interpret the data-driven models and to aid the operator of the machinery to take 

appropriate actions in order to prevent a defect product from actually being produced. All data 

acquisition and analysis steps were performed in Python. 

1.1.2 FERSA DDMs 

In the second use case (FERSA), the processes to perform the grinding of the bearing were considered. 

These processes are comprised of two machines, the first one is the workpiece manufacturing 

machine and the second one is the quality inspection machine.  

NOVA11 is the manufacturing machine responsible for grinding the inner bore of the bearing and the 

diametroInterior is the corresponding quality machine measuring different bearing dimensions (inner 

diameter, ovality, conicity, retalon). NOVA9 is the manufacturing machine responsible for grinding the 

raceway of the bearing and arania is the quality inspection machine which measures the height, the 

raceway and the flange of the bearing. Therefore, the following inputs-outputs time-series data were 

available: 

i. Machine parameters (NOVA11/NOVA9) 

ii. Measurements of the bearings (bearing dimensions as well as workpiece and environment 

temperatures) 

If a workpiece is outside the established tolerances for any bearing dimension, it is considered 

defective. Our task was to develop data-driven models (DDMs) that allow identifying product failure 

patterns as well as the prediction of the raceway manufacturing towards advising the operator 

preventively about manufacturing trends, so the dimensional defects in workpieces can be prevented 

and the number of defective workpieces can be reduced.  

Different approaches were considered in the DDMs development. Previous to the generation of 

DDMs, the production process of the FERSA was thoroughly analysed and understood (manufacturing 

and measurement processes, software components, relevant parameters of the machines, timing, 

actions done by the operator, possible failure causes, buffering, time bases, data retrieval, data 

ǎǘƻǊŀƎŜΧύ ŀƴŘ the data were analysed and pre-processed. The quality of data was analysed and a 
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synchronization algorithm was developed to match the inputs (machine parameters) and outputs 

(bearing dimensions; defective/non-defective workpiece) and to have the correspondence between  

the explanatory variables (NOVA11/NOVA9) and the output (diametroInterior/arania).  

Regarding the inner bore grinding process, in this deliverable we present the analysis and DDMs 

considering a larger data set with respect to the considered dataset in the previous deliverable 3.2., 

with data collected from June to September. At the same time more relevant bearing references for 

FERSA (52400 and 65237), in addition to reference 9278 were considered. The DDMs were trained for 

each reference. Regarding the raceway grinding process, the analysed data set covers data from 

October 2019 to January 2020, being the period which presents more stable manufacturing conditions 

and related data. 

The acquisition of data were performed in Python and the data analysis and data exploitation in 

Python and R. 

 

1.2 Objectives and tasks  

Concerning the SP use case, the objective of Task 4.1. can be split in two main components. The first 

one is to accurately predict defect products by using appropriate predictive models. The second is to 

provide an in-depth analysis so that an operator may consult to perform suitable actions in case a 

defect product flag is raised, to prevent the defect product from actually being produced. This process 

can be split in three steps: i) data acquisition from the sensors on the production lines, ii) development 

of state-of-the-art data-driven models for defect pattern detection and iii) interpretation analysis of 

the developed models for defect product prevention.  

Concerning the FERSA use case, data-based models were developed in Task 4.1. for the recognition of 

behaviour patterns as well as for the prediction of manufacturing output trends in a way that 

facilitates decision making whose purpose is the optimization of the manufacturing process. For the 

development of these models, the same methodology of Task 3.2 was followed, but taking into 

account more information from a more extensive data set. Also, the work done in Task 3.2. helped to 

create models better adjuested to reality. 

The algorithms will be run online and the results of the models will allow the generation of alarms that 

will be displayed in the shop-floor through a user interface, informing operators of certain process 

conditions. These alarms will help operators to make a series of decisions to improve quality control 

and minimize defective products.  

Therefore, the objective of this task could be summarized as the development of the final models 

whose results will help decision-making to prevent defective products, by generating real-time alarms 

at the shop-floor to notify operators of certain problematic situations in the process. 

1.2.1 SP 

The project for the SP use case is appropriately structured into tasks that focus on achieving the above 

objectives: 

 Extraction and gathering of input data (machine parameters) 

 Aggregations of input data 
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 Extraction and processing of output data 

 Matching input and output data (independent variables and target-variable) 

 Feature extraction, engineering and selection 

 Development of data-driven models 

 Rejection/ Acceptance of images based on specification requirements (tolerances) 

 Additional analysis to interpret the complex, black-box models 

1.2.2 FERSA 

In order to meet the above objectives, the project for FERSA followed the agile and iterative CRISP-

DM methodology (Cross Industry Standard Process for Data Mining), with the following tasks: 

¶ Business understanding to understand the context of the thematic 

¶ Data understanding to explore and analyse the data from the data sources to detect problems 

and possible solutions related to the available data and according to the business 

understanding carried out. 

¶ Data preparation to create the data structure on which the algorithm is trained: 

o Data pre-processing (e.g. generation of new variables, dimensionality reduction, etc.) 

o Matching input with output data (synchronisation algorithm) 

¶ Modelling: development of the DDMS by taking into account: 

o Exploration of data modelling approaches 

o Selection of the most suitable data-modelling approach 

o DDMs development 

o DDMs interpretation. Results 

¶ Deployment: Corresponding to putting the models into production displaying the alarms 

derived of the models on a screen in the shop-floor. This task is presented in detail in 

Deliverable 5.2. 

 

2 SP DDMs (developed by CETRI) 

2.1 Data Pre-processing 

2.1.1 Input Data 

Training a Machine Learning model requires a set of independent variables (features) and a target 

variable to be predicted. In the SP case the input data pertain to machinery parameters, as fetched 

with appropriate sensors attached to the production line. The data are not fed directly to the models 

but are rather first stored in database and then ingested through an API. The input data for training 

the models span 2 days of consecutive production time, creating 172,000 observations with a one 

second interval step. Though the number of days may seem small, the number of observations they 

pertain to is more than enough for training well-performing Machine Learning models.  

We initially fetch data for all available channels (59) and then perform Exploratory Data Analysis to 

check the correlation of each independent feature with the response (target) variable, eliminating 

some of them during this process. We also check for data inconsistencies, missing values and outliers 

that may arise due to temporary sensor failures or equipment errors. Finally, we also check for 
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invariant features, which are machine parameters that have remained constant in the most part of 

the production and do not actually affect the target variable. This process eliminates nearly half of the 

initial features, leaving 28 for creating the ML models. While this might look like a great loss of 

information, in Machine Learning it is very crucial to have as good data as possible rather than much 

data, thus quality is far more important than quantity. 

Table 1.A glimpse into the first 10 variables of the dataset 

 

Table 1 provides a feeling of the initial data set as gathered through the API. All variables bear their 

API encoding for space brevity reasons. The descriptive statistics of these variables can be found on 

the next table.  

Table 2. Descriptive statistics of the input data 

 

It is obvious from Table 2 that the input data present a variety of scales and sizes. Many algorithms 

(such as Deep Learning) require the input data to be in the same range in order to perform reasonably 

well. In our case, though, this does not apply, because we are going to use an advanced technique of 

decision trees, since they outperformed all other tested algorithms. This technique, called Gradient 

Boosted Trees is scale-invariant, meaning that it is not affected by different date ranges and scales. 

Thus, we do not need to proceed with feature normalization or standardization.  

One last step in the input data pre-processing, is removing highly correlated data. When two features 

are highly correlated (either positively or negatively), they are either redundant (since they bear the 

same information regarding the movement of the response variable) or they can even be harmful for 

the data-driven model due to multicollinearity, a phenomenon that renders the final model vulnerable 

to high variance (so that minor changes in input variables can affect greatly the output variable).  
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Figure 1. Correlation heatmap 

In Figure 1 we plot the correlations of the input variables. We can easily observe that some pairs of 

features are strongly positively correlated (dark colours) and some others are very strongly negatively 

correlated (whiter colours). For each of these pairs we have excluded the feature that affects the 

target variable less.  

After ingesting, cleaning and examining the properties the input data, we can proceed with the output 

data.   

2.1.2 Output data 

The output variable in SP case is the deviation between the target dimensions of the products and the 

final product. There are six points of interest in which deviation is measured (A through E). These 

points are shown in Figure 2 below.  

 

Figure 2. Target dimensions in the six points of interest 
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In order to measure the deviation between target and actual dimensions, SP has installed a special 

piece of photographing and measurement machinery called Profilometer. Profilometer takes 

snapshots from a variety of angles, as the produced parts go through the production line and 

calculates the deviations in real time. The profilometer is installed at a stage of the production line, 

such that the product has taken its major form and no other major reforms are going to take place 

afterwards. Figure X presents an abstract map of the production line where the Profilometer can be 

observed with the yellow highlight.  

 

 

Figure 3. Map of the production line (Profilometer highlighted) 

The data collected span the same period as the input data, for two consecutive days of production 

and are also measured at the same interval of one second. Thus, we end up with a matrix of 

dimensions (53814, 6) pertaining to 53814 dimension measurements for each of the six points of 

interest. A snapshot of the data is given in Table 3 below.  

Table 3. Output data sample 

 

After ingesting the output data, we perform some pre-processing, in a fashion similar -but not 

identical- to the input data. We first want to make sure that all measurements are on the second tick 

mark, so we resample our data to the second, just to be certain that no inconsistencies will survive to 

the modelling part. Afterwards, we drop missing values that arise due to Profilometer or other 

machinery errors. Likewise, we take care of minor outlier extreme values that are probably the 

outcome of faulty sensors. We chose not to impute but rather to drop bad values (missing and outliers) 

to avoid inducing bias to the Machine Learning models. After taking care of the output data set, we 

proceed to concatenating these two datasets, in order to proceed with the modelling part.  
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2.1.3 Matching input with output data 

Since the input sensor data from the production lines are ingested on a separate stream than the 

image data, it is apparent that we must develop a process to match the input with the output data.  

The input data from the production line are actually temporal data, which means that they come in 

the form of a time series with respect to a range of variable parameters, forming a mxn table where 

m  corresponds to time recordsand n are the corresponding machine parameters (sensor data) in each 

time step. On the other hand, the output data form an array of observations with length 6 

(corresponding to the number of interest points at which deviations are measured by the 

Profilometer). The correspondence between input and output data is schematically displayed in Figure 

4 below (many to one relation).  

 

Figure 4. Illustration of raw input-output data correspondence 

Thus, for each single ouput measurement from the Profilometer, we get multiple input 

measurements. To proceed with the Machine Learning modelling part, we need to bring these data in 

a-sigle line format (one line of input data for one line of output data. To accomplish this goal, we 

performed a series of aggregations to the input data. These are the following five:  

¶ Mean  

¶ Max  

¶ Min  

¶ Standard Deviation  

¶ Skewness  

In order to apply these transformations, we need to know the time window that takes place before 

the measurements are performed at the Profilometer. Using the production line mini-map from Figure 

3, we can calculate the time needed for a specific rubber part to travel from the line start to the 

Profilometer. This time is the ratio between the distance and the production line speed, i.e. 42.94 

meters /  18.5 meters/sec = 2.32 minutes or 139.2 sec. Thus, we need to calculate the above 5 

statistical measures (first and second moments in the respective terminology) to transform the time-

series data and establish a one-to-one relation between input and output data.  

!ŦǘŜǊ ŀǇǇƭȅƛƴƎ ǘƘŜǎŜ ŦƛǾŜ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴǎ ǘƻ ǘƘŜ ƛƴǇǳǘ ŘŀǘŀΣ ǿŜ ŜǎǎŜƴǘƛŀƭƭȅ ΨŦƭŀǘǘŜƴΩ ǘƘŜ ƳȄƴ ƛƴǇǳǘ ǘŀōƭŜ  

to a 1x(5xn) array (for each Profilometer measurement). More specifically, for the time period t1 to 

tm, we first calculate the mean of every variable V1 to Vn. This results in a 1 by n array of values. We 

repeat the same process, calculating the maximum of each variable for the same period of time, 

resulting again in a 1 by n array). We continue in the same fashion for the rest of the transformations. 

The final input vector of values is then concatenated with the output vector of size 1x6.  
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Figure 5. Illustration of transformed input features for each Profilometer measurement 

The same process is repeated for all timestamps where the are available measurements from the 

profilometer, each one getting stacked below the previous one (Figure 6).  

Figure 6. Illustration of final input-output data scheme 

After concatenating all input and output data, we end up with a single table that contains as many 

rows as the number of available profilometer measurements (after the respective pre-processing) and 

the number of columns is the sum of 5 times the initial input data plus the 6 columns of deviation 

measurements. This translates into a table of 53814 rows and 145 columns, which is ready to be used 

directly by the data-driven models.  

2.2 SP DDMs  

After completing all the above steps we can develop the data-driven Machine Learning models to 

predict deviation of product dimensions. At this time, we are treating this problem as a regression 

problem, i.e. a case where a continuous variable needs to be predicted (vis-à-vis a binary one). Given 

that the scope of the project is to predict and prevent defect products (i.e. binary classification) we 

can easily transform our numerical predictions to binary ones. This task is straightforward: we only 

need to compare the actual deviation to the factory requirements (tolerances) and if it exceeds this 

threshold to classify the part as defect. However, this will take place after the development of 

appropriate models and the comparison of their performance.  

2.2.1 The pool of suitable algorithms 

Machine Learning Regression problems can be tackled with a plethora of alternative algorithms. We 

have considered a range of such models, leaving more buzzword algorithms like Neural Networks out, 

since they require large amounts of data to outperform the set of selected algorithms. Moreover, 

Neural Networks tend to be Black-Box models, in the sense that the mechanism behind them cannot 

easily be interpreted and consequently used to explain how exactly the input data affect the target 

variable. Taking all the above under consideration we selected the following algorithms to develop 

respective models and compare their performance:  

¶ Linear Regression models 

¶ Ridge Regressors 

¶ Random Forest Regressors  

¶ Gradient Boosted Trees 
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The selected Machine Learning models are all very appropriate for modelling and performing 

regression problems, i.e. cases where we need to predict a continuous variable like in our case (vis-à-

vis classification problems where the target variable is binary).  

¶ Linear regression searches for the best linear fit between two variables. In our case we apply 

multiple linear regression since with have more than one explanatory (independent) variable. 

Linear regression presents good performance and is quick and easy to apply but on the 

downside makes many assumptions on the structure of the data and can be impacted by data 

multicollinearities (as explained in section 2.1). Moreover, as its name implies, linear 

regression can only uncover linear relations.  

¶ Ridge regression is a special case of linear regression that applies a penalization scheme and 

reduces the coefficients of some of the independent variables. In this fashion, ridge regression 

is able to tackle the problem of multicollinearity and generally performs better, by giving the 

model a better ability to generalize (predict new, unseen data).  

¶ Random forest regressors is a technique used to ensemble the result of many individual 

decision trees into a single output. After developing a number of stand-alone trees, the 

algorithm applies a voting scheme where each tree has an equal vote, and thus the final 

prediction is the average of all the summoned trees. This is a very powerful technique that in 

many cases outperforms linear models but should be applied carefully, because it is prone to 

overfitting.  

¶ Gradient boosted trees is another technique of ensembling decision tree outputs. Only in this 

case, instead of parallelly creating trees and then casting a vote, boosted trees work serially, 

each one building on top of the previous one. In this fashion, boosted trees are able to 

gradually increase performance, giving higher attention to paradigms where the last tree has 

not performed very accurately. Actually, boosted trees are considered state-of-the-art 

nowadays in structured, tabular-style problems such as the one faced here, outperforming 

even the more sophisticated Neural Network-based models.      

2.2.2 Cross-validation parameter tuning 

Each one of the selected algorithms is very appropriate for the problem at hand, however they all 

have a range of parameters that need to be tuned in order to reach their full capability. We have used 

appropriate techniques and followed common practices to maximize the performance of each one, 

e.g. cross-validation and grid search. Cross-validation consists of randomly splitting the entire sample 

in smaller sub-samples and testing the performance of the applied models in each of these smaller 

parts of data. Grid-search is a exhaustive search practice, in which a pre-defined set of parameters is 

permuted and their combinations are tested against the performance on each of the sub-samples, 

utterly reaching the set of parameters that presents the best overall performance across the entire 

dataset. Once the model parameters are found we proceed with the comparison of the results in the 

next section.  

2.2.3 Feature selection  

Machine Learning and Artificial Intelligence algorithms thrive on abundance of data. However, the 

provided data have to be a) clean and b) relevant. We have already taken care of point (a) at the pre-

processing step. Point (b) refers to the actual relation of the input variables with the dependent, 
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output variable, in our case the deviation between specified and actual product dimensions. Not all 

available variables are supposed to play a significant role in affecting the target variable: some of them 

may be correlated with one another (and thus offer no added information to the model) while others 

may be inter-dependent (e.g. input variable b is a direct outcome of input variable b and thus has no 

value on its own).  

Furthermore, having too many input variables mŀȅ ƭŜŀŘ ǘƻ ǘƘŜ ΨŎǳǊǎŜƻŦ ŘƛƳŜƴǎƛƻƴŀƭƛǘȅΩ ƛƴ ƳŀŎƘƛƴŜ 

learning where the feature space of available solutions get so complicated that the algorithm 

converges to a solution very slowly (or even never).  

To avoid these pitfalls, the machine learning team convenŜŘ ǿƛǘƘ ǘƘŜ ΨōǳǎƛƴŜǎǎΩ ŜȄǇŜǊǘǎΣ ƛΦŜΦ {tΣ ƻƴ ǘƘŜ 

factors that affect product output. The target was to find which parameters the machine operators 

tinker in order to affect product dimensions, using their accumulated experience over the years. 

Another goal of the exercise was to eliminate all variables that are concurrently changing or that are 

direct results of other variables (as described above). We should highlight that this exercise pertained 

to the specific dataset at hand and not the full working knowledge of SP, since these are the data upon 

which the DDMs are developed. For example, the information pertaining to the IR lamps was 

disregarded since, in the particular time period of the data set, they displayed constant values and are 

thus of no modelling useability.  

Overall, the described process led to the elimination of a further 22 variables, leaving a total of six 

input variables for the DDM development. These six variables pertain to the selected speed of the 

extruders and the temperature of the ovens as below:  

¶ Gas_Oven_Area1_Temperature 

¶ Gas_Oven_Area2_Temperature 

¶ Gas_Oven_Area3_Temperature 

¶ Main_Extruder_Speed_Normalized 

¶ Auxiliar_Extruder_Speed_Normalized 

¶ Tricom_Extruder_Speed_Normalized 

2.2.4 DDM Performance  

An important task in creating well-performing Machine Learning models is the selection of the error 

metric. In Machine Learning models that operate in continuous space (regression problems) there is 

a wide range of such metrics. The most common ones are Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE). Our metric of choice for developing the 

algorithms is RMSE because it gives a greater importance to larger errors since they are squared before 

being averaged.  

ὙὓὛὉ 
ώ ώ

ὲ
 

However, we also report the corresponding performance of the models in terms of Mean Absolute 

Error since it is more easily comprehensive by the reader and can also be used per se to understand if 

the performance of the model is adequate for predicting defect products.  
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Table 4. RMSE results, SP case 

 
RMSE 

 
D_A D_B D_C D_D D_E D_F 

Linear Regression 0.090 0.088 0.120 0.101 0.150 0.099 

Ridge Regression 0.078 0.069 0.080 0.076 0.143 0.068 

Random Forests 0.051 0.044 0.058 0.044 0.120 0.022 

Boosted Trees 0.049 0.041 0.069 0.042 0.116 0.026 

 

The power of a machine learning model lies within its ability to generalize, i.e. to perform well on new, 

unseen data. For this reason, the common practice is to keep a holdout set that the model has not 

been trained on in order to test its generalization ability. The rule of thumb is to split the initial data 

in a 80%-20% ratio (see Fig 7 below).  

 

Figure 7. Train-test split illustration 

Following this common practice, we withheld part of the available data and after developing each 

model, we used this dataset. Tables 4 and 5 report RMSE and MAE respectively, on these data.  

 

 

Table 5. MAE results, SP case 

 
MAE 

 
D_A D_B D_C D_D D_E D_F 

Linear Regression 0.070 0.044 0.039 0.032 0.048 0.039 

Ridge Regression 0.055 0.031 0.034 0.028 0.047 0.029 

Random Forests 0.044 0.027 0.028 0.019 0.035 0.018 

Boosted Trees 0.040 0.022 0.031 0.014 0.031 0.020 
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It is directly observable that all algorithms have performed particularly well, reaching levels below 0.1 

millimetres, across all dimensions. This means that, on average, all models fall less than 0.1 millimeters 

away from the measured deviation between the target dimension and the actual one.By comparing 

this outcome with the actual deviation values (sample included in Table 3), we observe that the mean 

percentage error ranges from 0.24% (dimension D) to 0.15% (dimension A).  

These results confirms our pool of algorithmic choices as appropriate alternatives for the problem at 

hand. It is also clear that Gradient Boosted Trees have the best performance across the alternatives 

examined. They outperform even the well-known random forests in four out of the six dimensions 

measured, reaching their peak performance of 0.013 on Dimension D, i.e. they can predict with 0.01 

mm accuracy the deviation in the dimensions of the part being produced. Overall, Boosted Trees 

perform better than all the other alternatives in the majority of the measured dimensions (A, B, D, 

and E), followed by Random Forests at dimensions C and F. Thus, we select Boosted Trees algorithm 

as the final DDM.  

Lastly, we include the most important variables that affect the final prediction of the data-driven 

models, according to LightGBM boosted trees library. These can be used to tune the production lines 

in order to improve the final product and ultimately to minimize defect products in the SP case. The 

most important features according to the Gradient Boosting models are listed below:  

 

Figure 8. Average Feature Importance according to Gradient Boosted Trees 

The appearance of the input variables in this graph is by descending order, hence tinkering with the 

top variables affects the end product the most. The importance of the features is generated by the 

algorithm after calculating the times each one of them was used to split the branches upon which the 

Boosted Trees were created (for a mor ethorough explanation refer to section 2.3 below.  

This figure contains the average feature importance across all output dimensions measured and not 

for each specific one. More on the actual utility and usability of these (as well as the other) variables 
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in the prevention of defect products across all dimensions is contained on the next section where the 

impact of them on the target variable is further analysed with an appropriate tool. 

2.3 Prescriptive analysis for defect prevention  

The data-driven models that were considered and developed above are the most appropriate and 

most well-performing solutions according to the scope of the task, which is defect product prediction. 

To complement the analysis so far and to provide a holistic solution that will allow factories to prevent 

the generation of defect products (when detected), one last important step is required: the 

exploration of the relation between the input and output variables and, thus, how the operator can 

tweak machine parameters to timely and effectively prevent the creation of a defect product. 

Gradient Boosted Trees, despite displaying state-of-the-art performance in structured data machine 

learning problems, are still considered as black-box algorithms, due their development process. A 

Boosted Tree is a sequence of decision trees, where each one builds atop the previous one, correcting 

the residuals, i.e. the errors the previous tree did. In each new tree the algorithm decides upon which 

variables to make a binary split in order to construct the tree. This is achived by calculating how close 

to the actual value the predicted one is (Chen and Guestrin, 2016). This process however does not 

allow the practitioner to take advantage of the developed model in order to take preventative action, 

despite allowing him to correctly predict the final output.   

To tackle this problem, in this section we apply the latest developments in machine learning model 

interpretation tools. More specifically we employ the Python library SHAP (Lundberg and Lee, 2017) 

which uses Game Theory in a competitive game of different simple linear models that race against 

each other in order to construct a sophisticated analysis of how each input variable affects the target 

variable. In our case, the target variables are 6, i.e. the deviations between the factory specifications 

and the profilometer measurements at the 6 points of interest on the profile. What we seek to find is, 

when a product is flagged as defect by the data-driven models, which variables we should tweak and 

how (by lowering or increasing their values) to restore normality (i.e. prevent the creation of defect 

products).  

We provide below in Figures 9 to 14 the output graphs of SHAP analysis for each of the six dimensions 

of focus, and then we elaborate on how it can be used to aid the cause of zero defects.  

The figures below contain all the variables that are deemed important by SHAP, with variables at the 

top being more important as they can explain a wider variance of the target variable. In the right part 

of each figure there is a legend which indicates each variableΩs values, ranging from blue to red, with 

bluer shades corresponding to low values and red ones to high variable values.  

The graph itself displays how each independent variable affects the target variable, which in this case 

is the deviation from factory requirements. The horizontal axis contains SHAP values, with negative 

values pertaining to smaller target-variable values and positive values corresponding to higher target-

variable values.  

For example, in the first Dimension (A), higher Coating Profile Temperature values are associated with 

high deviation values while lower temperatures pertain to decreased deviation. On the other hand, 

Tricom Extruder Pressure is inversely related to deviation, with low values being associated to high 

deviations and vice-versa.  
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It is noteworthy that all SHAP figures do not correspond to each other and they also may differ from 

the variable importances as calculated by the Boosted Trees algorithm in Figure 8 above. Tree-based 

algorithms use a purity measure like Entropy to calculate how well the data can be split, in order to 

select a variable as a split node (see e.g. Breiman, 2001). Variable importance is thus the descending 

order in which variables have been used to split the trees. On the other hand, SHAP is a different, 

model-agnostic technique, that uses Game Theory to calculate how each and every sigle observation 

has been affected from the rest and which variables led to observable result. A more thorough 

explanation can be found on the respective paper by Lundberg and Lee (2017).  

 

Figure 9. SHAP Analysis dimension A 

 

Figure 10. SHAP Analysis dimension B 
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Figure 11. SHAP Analysis dimension C 

 

Figure 12. SHAP Analysis dimension D 
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Figure 13. SHAP Analysis dimension E

 

Figure 14. SHAP Analysis dimension F 

The use of these graphs for the prevention of defect products is pretty straightforward.  Starting from 

the most important variables at the top of each graph and traversing downwards the less important 

independent variables (machine parameters), a machine operator is able to calibrate the machine 

parameters and adjust them accordingly, in order to prevent the creation of a defect at the end of the 

production phase. For example, in the case of dimension A,  if the algorithm predicts a positive 

deviation (the product dimensions are larger than the template product), the operator should 

decrease the Auxiliar Extruder Speed  since lower values of this variable should lead to an decrease of 

deviation (negatively, thus in the correct direction). On the other hand, if a negative deviation is 

predicted (product dimensions smaller ǘƘŀƴ ǘƘŜ ǘŜƳǇƭŀǘŜΩǎύ ǘƘŜ ƻǇŜǊŀǘƻǊ ŎƻǳƭŘ decrease  the Main 

Extruder Speed, since lower (blue) values of this variable are associated with an increase in deviation. 

Another interesting finding on the SHAP analysis is that different variables have different impact on 

the six dimensions. For example, the speed of the main extruder shows an inverse relation with the 

deviation in most dimensions: low values of this variable are found to lead to increased deviations 

between actual and target dimensions. This is not true in Dimension 6 however; in this case lower 

values lead to a decrease in deviations, a finding that should be taken under consideration when 

adjusting this parameter during production.  

We should note that since this is designed as a Decision Support System rather than a fully automated 

solution, great values should be placed at the ƻǇŜǊŀǘƻǊΩǎ ŜȄǇŜǊƛŜƴŎŜΦ ¢Ƙƛǎ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴǎ 

of the Boosted Trees and the meta-analysis provided by SHAP, should be taken under consideration 

and be evaluated in order for the machine operator to produce an informed decision on which 

direction and what magnitude changes he should make to each variable, to prevent a defect product.  

 

2.4 DDM integration in the Control Module 

As introduced in deliverables 4.3 and 4.5, the core of the control module is the ROM that allows to 

predict the profile shape based on the process parameters measured in the line. Thanks to the ROM 

rapid response, it is possible to anticipate errors before they appear at the end of the line end minimize 

deviations from the optimal profile shape through an optimization module that compute the optimal 
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values for the identified set of controllable parameters. Due to the complexity of the chemical process 

that occurs in the SP manufacturing line, which is influenced by the specific material properties of 

each batch, it is necessary to periodically update the ROM settings, to ensure that the predictions 

remain accurate. This is done through a recalibration module that takes historic values for process 

inputs and outputs to minimize the error between ROM predictions and real process outputs.  

The DDM results presented in previous sections, therefore, need to be integrated in the Control 

Module to provide additional insight on the production process and propose additional corrective 

actions where the ROM might not be sufficient. From the results of the SHAP analysis, thanks to the 

different nature of the DDM with respect to the ROM, decision-making rules can be defined to support 

operators to fine-tune the process when some deviation is still present despite ROM based 

optimization. Being based on a physical simulation model, in fact, the ROM could include some 

simplifications in parameters representation, or could fail in modeling some of the inherent variability 

of the process that is due, for example, to the specific characteristics of each single machine. On the 

other side, DDM is based on real data measured in-line and can provide information on process 

parameters that are difficult to model physically.  

SHAP analysis provides insight on the most relevant process parameters that affect the profile shape, 

giving indications on which parameter has higher impact on a specific profile dimension and how it 

affects that dimension, meaning positive or negative correlation. An operator can therefore use this 

knowledge to increase or decrease machine set points depending on the profile shape deviations 

measured at the end of the line. This process, when coupled with the operatorΩs experience, can lead 

to an improvement of performances over the sole ROM-based optimization implementation. 

When expanding the view of the STREAM-0D system from a single production line to multiple lines in 

different factories around the world, the relevance of a DDM-based decision support tool becomes 

more evident, as the same ROM can be used to describe multiple lines, being no differences in the 

physics of the process, while a specific DDM for each line could help identifying each line inherent 

differences and provide a specific set of support rules for fine-tuning for the operators of that line. 

The optimization module, the decision-making support rules and the recalibration module are 

implemented in parallel to control the process behavior towards zero defect manufacturing. The 

figure below provides a view of the complete control loop scheme for the SP production line.  
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3 FERSA DDMs (developed by ITAINNOVA) 

3.1 DDMs Overview 

An agile and iterative methodology based on CRISP-DM (Cross Industry Standard Process for Data 

Mining) has been followed in the development of the FERSA use case with the following aim in each 

of the phases: 

- Business Understanding: The first task carried out was to understand the manufacturing 

process of the FERSA machines so that the casuistries of the process can be detected and 

subsequently analysed. Therefore, this previous phase is necessary for the analysis and 

interpretation of the data as well as to define the relevant KPIs where to focus the attention. 

- Data Understanding: The next task was to analyse the data and detect problems and possible 

solutions, according to the previous task (business understanding).This task allows to identify 

data quality and data coherence problems, enabling after an exploratory analysis to find out 

knowledge about the data. 

- Data Preparation: Once the data were analysed, the next task was to pre-process the data so 

that they would be suitable for training in subsequent stages (by addressing also 

synchronisation between manufactured workpieces and related measurements got by 

inspection quality machines). 

- DDMs development for the NOVA11 machine and output inspection machine 

(diametroInterior): Finally, the models were trained on a dataset containing input features 

with outputs (target variables), then to give an interpretation to the model. 

- Deployment: Once the final models that generate knowledge are created, the last task of the 

methodology is the deployment, that is, putting the models into production. In particular, the 

deployment will be carried out in a virtual machine of FERSA where alarms derived from the 

modelling of data will be generated and displayed on a screen in the shop-floor, so the 

operators are notified of possible problems for production and they can intervene, optimizing 

the manufacturing process. This task is explained in deliverable 5.2. 

 

3.2 Business Understanding 

In previous iterations, presented in Deliverable 3.2, the Business Understanding phase allowed to 

detect casuistries of the process and considerations to be taken into account for the development of 

DDMs. The development of the different phases of the CRISP-DM methodology, by taking these 

considerations into account, enabled to make decisions and to improve the different algorithms in 

successive iterations, addressing the project in a more effective way, thanks to that previous context 

learning. 

Following we present the most important considerations that have been taken into account and how 

we have worked to solve them and what actions we have carried out for the development of the final 

models: 
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Á Accessible variables and control in process:  

Regarding NOVA11: 

As stated in the Deliverable 3.2, the Marposs (external component) executes the control-in- 

process, masking the effects of the values of the metrics towards the manufacturing results 

obtained in NOVA11. For example, the Marposs performs a compensation for the 

manufacturing deviations of each workpiece that will be affected in the metrics. This Marposs 

unit has access to the inner parameters and related variables of the machining process such 

as power consumption, real time angular speed of the grinding, real time angular speed of the 

part to be machined and so on. Anyway, these variables are not accessible from external 

systems, i.e. they are a black box where the output of the process itself is the final position of 

the grinding wheel (metrica_1). Besides, the internal implementation of the Marposs 

algorithms is not available, so it is not possible to know how the Marposs carries out the 

compensations or the control-in-process. Furthermore, due to the access possibilities to 

NOVA11, only 9 parameters can be retrieved from the NOVA11 configuration and machining 

process; these parameters are the metrics from NOVA11 (metrica_1 to metrica_9). We access 

this information in real time from python using the PostgreSQL database adapter Psycopg2. 

The metrics available for the workpieces manufactured in NOVA11 are: 

- date: machine date when quality measurements are performed. 

- capturedate: capture date when data is stored in database. 

- metrica_1: Ending position X Axle (µm), final position of the centre of the grinding wheel 

towards a position reference system. 

- metrica_2: Diamond-truing1 frequency (number of units made between two truing 

processes), frequency of the diamond truing process which is carried out to restore the 

wheel shape (this metric is a configuration value for the control system). 

- metrica_3: Fine Grinding Speed (mm/s), linear speed of approximation of the grinding 

wheel towards the inner surface of the workpiece (this metric is a reference for the control 

system). 

- metrica_4: Axle Z oscillation speed (mm/m) (this metric is a reference for the control 

system) 

- metrica_5: Driver spindle speed (r.p.m.), angular speed of the workpiece whose inner 

diameter is to be machined (this metric is a reference for the control system). 

- metrica_6: Grinding Wheel speed (mm/s), linear speed required in the contact among the 

inner surface of the workpiece and the outer surface of the grinding wheel (this metric is 

a reference for the control system). 

- metrica_7: New Grinding Wheel Diameter (µm), initial value of the grinding wheel 

diameter when the grinding wheel is replaced (this metric is a reference for the control 

system). 

                                                           
1 Truing is the term used to describe the removal of material from the cutting face of the wheel to bring every 
point of the grinding surface concentric with the machine spindle (to establish concentricity) and to introduce a 
form (shape) into the wheel. Truing is done when a new wheel is installed, before it's used for the first time and 
after grinding a certain number of pieces (truing frequency), in order to restore the wheel shape. Diamond truing 
and dressing tools are used to achieve maximum grinding wheel performance. 



STREAM_0D ς Grant Agreement n. 723082   
 

STREAM-0D D4.1 
 Page 28 

 

- metrica_8: Diamond dressing speed (mm/min), linear speed of the diamond truing 

process of the grinding wheel which takes place with the frequency indicated in metrica_4 

(this metric is a reference for the control system). 

- metrica_9: X axle increase summation, internal metrics of NOVA11 which is related to the 

amount of corrections based on an estimation of a linear wear of the grinding wheel. 

Metric 9 is not a machine parameter, but it is a calculated metric that is useful for calculating 

the current grinding wheel diameter. Metrics 2, 3, 4, 5, 6, 7 and 8 are reference parameters 

for the control system. Therefore, Metric 1 is the only metric related to the real manufacturing 

and the result of Marposs and its value dependent on other factors, which are not visible or 

controlled outside Marposs. So, by only considering these metrics, there is a lack of 

representative metrics that adequately explain the process and allows optimizing the 

manufacturing process. With the aim of explaining the process better, we generated new 

variables based on the manufacturing context and by considering the available data, such as 

the current grinding wheel diameter. These variables are described and analysed in the 

following sections. 

On the other hand, as Marposs itself commands the actions to perform during mechanization, 

the causality and prediction of the outcome in diametroInterior is affected and masked by 

Marposs behavior. In addition to that, the range of values in metric 1 may vary, depending on 

where the origin of the reference position system is located; however, the reference position 

information is not available, what would allow data to be normalized to a common scale.  

Due to these reasons, the last versions of the DDMs aim at the defect pattern recognition 

based on the information analysis regarding NOVA11 manufacturing conditions (e.g. grinding 

wheel diameter), environmental conditions (temperatures), dimensional measurements and 

defect typology which can arise during the manufacturing. These models will enable a better 

understanding of the causes which can lead to defect generation and will help the operators 

improve the quality control and to minimize the defect products. The different approaches 

used for pattern recognition are described in the following sections. 

Regarding diametroInterior: 

The available metrics for every measured workpiece are:  

- date: machine date when quality measurements are performed. 

- capturedate: capture date when data is stored in database. 

- reference: bearing reference 

- batch: bearing reference batch 

- metrica_1: workpiece temperature (ºC). 

- metrica_2: master temperature, corresponding to environmental temperature (ºC). 

- metrica_3:  upper inner bore diameter tolerance (mm). 

- metrica_4: lower inner bore diameter tolerance (mm). 

- metrica_5: upper ovality tolerance (mm). 

- metrica_6: lower ovality tolerance (mm). 

- metrica_7: measures the compensation of deviations proposed by diametroInterior 

machine. The rules on which it is based are explained in deliverable 3.2. 
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- conicity: conicity tolerance (mm). 

- retalon: step or retalon tolerance (mm). 

- piezaok: boolean variable that indicates whether the part is defective (nook) or not (ok). 

Metrica_3, metrica_4, metrica_5, metrica_6, conicity and retalon are quality dimensions 

measurements.  

For each manufacturing reference, each dimension has a defined minimum tolerance and 

maximum tolerance. If the workpiece measurements for any of these dimensions are below 

or above the related tolerances, then the workpiece is defective. In the case of a defective 

workpiece by the inner bore diameter dimension, we differentiate between defective by being 

below the minimum tolerance (there is material above the minimum tolerance in the bore 

and, therefore, it is smaller than it should; the workpiece must be reworked) and by being 

above the maximum tolerance (the grinding wheel has grinded too much and the bore is too 

big, i.e. there is a lack of material). 

Although all workpieces that are outside the tolerance range are considered as defective 

workpieces, it is interesting to differentiate between types of failures since each of the 

dimension failures may require a different action. For example, it is not the same to consider 

a defective workpiece by diameter below the tolerance, which can be reworked, than by 

diameter above the tolerance, where the workpiece is already discarded. In the failure pattern 

recognition model, we take into account failures due to conicity, ovality, retalon, diameter 

below tolerance (super material) and diameter above tolerance (lack of material). 

However, we detected that workpieces with values in the boundary of the limit tolerances 

were stored in the data base as defective workpiece, when they should be stored as non-

defective. This is due to the fact that the dimension metrics are stored in millimetres with an 

accuracy of 3 decimals, resulting from truncating to 3 decimals. Assume, for example, the case 

of a workpiece with a value in the diameter metric of 0.013, we would not be sure if the 

current measurement is 13 microns (non-defective workpiece) or 13.6 microns (defective 

workpiece). This data storage problem was communicated to FERSA, which quickly corrected 

it thereafter, however, the training data set previously considered still contains that problem. 

Therefore, in the results presented we consider as failure according to one dimension those 

that are not exactly at the tolerance limit, whileas due to the truncating it is not feasible to 

assign it as a failure with the corresponding dimension. 

Regarding NOVA9: 

The available metrics are similar to those of NOVA9: 

- date: machine date when quality measurements are performed. 

- capturedate: capture date when data is stored in database. 

- metrica_1: Ending position X Axle (µm), final position of the centre of the grinding wheel 

towards a position reference system. This metric is a reference for the control system, 

which can be set by an operator. 

- metrica_2: Sparkling time (seconds), spark-out time in the grinding process, i.e. the 

required time to complete a grinding pass through the whole inner surface of the bearing 
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to eliminate in that way inconsistencies in the machine or workpiece (this metric is a 

reference for the control system). 

- metrica_3: Fine Grinding Speed (mm/s), linear speed of approximation of the grinding 

wheel towards the inner surface of the workpiece (this metric is a reference for the control 

system). 

- metrica_4: Diamond truing frequency (number of units made between two truing 

processes), frequency of the diamond truing process that is carried out in order to restore 

the wheel shape (this metric is a configuration value for the control system). 

- metrica_5: Grinding Wheel speed άperipheralέ (mm/s), linear speed required in the 

contact among the inner surface of the workpiece and the outer surface of the grinding 

wheel (this metric is a reference for the control system). 

- metrica_6: Driver spindle speed (r.p.m.), angular speed of the workpiece whose inner 

diameter is to be machined (this metric is a reference for the control system). 

- metrica_7: Current Grinding wheel diameter (µm) for each manufactured workpiece 

- metrica_8: Diamond dressing speed (mm/min), linear speed of the diamond truing 

process of the grinding wheel which takes place with the frequency indicated in metrica_4 

(this metric is a reference for the control system). 

- metrica_9: X axle increase summation, internal metrics of NOVA9 which is related to the 

amount of corrections based on an estimation of a linear wear of the grinding wheel. 

Unlike NOVA 11, NOVA 9 has a new variable (metrica_7) which is the current diameter of the 

wheel, which in the case of NOVA11 has to be calculated. However, the metric value 1 is a 

reference value and not a real manufacturing value. On the other hand, NOVA9 has no control-

in-process and, therefore, there are no external agents that mask of the effects of the metrics. 

Therefore, for this process the generated DDMs are related to the prediction of the raceway 

dimension given the historical data and the manufacturing process parameters. These models 

provide information on the behaviour of the future trend so that defects can be prevented in 

the workpieces. 

In the data Understanding section, the previous metrics are analysed. 

Regarding arania: 

The metrics available for every measurement are the deviations with respect to the nominal 

of the following dimensions: height, raceway and flange.  

The metrics available for every measurement are: 

- date: machine date when quality measurements are performed. 

- capturedate: capture date when data is stored in database. 

- reference: bearing reference 

- batch: bearing reference batch 

- metrica_1: boolean variable that indicates whether the part is defective (nook) or not (ok). 

- metrica_2: boolean variable that indicates whether the master workpiece is being 

measured as machine calibration measure. 

- metrica_3:  inner ring program. 

- metrica_4: inner ring program + step program. 
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- metrica_5: Height+Raceway+Flange Program (1 point). 

- metrica_6: Height+Raceway+Flange Program (3 point). 

- metrica_7: height tolerance (mm). 

- metrica_8: raceway tolerance (mm). 

- metrica_9: flange tolerance (mm). 

- metrica_10: inner ring upper parts. 

- metrica_11: inner ring middle part. 

- metrica_12: inner ring lower part. 

- metrica_13: inner ring upper ovality. 

- metrica_14: inner ring lower ovality. 

- metrica_15: inner ring obliquity. 

- metrica_16: inner ring taper. 

- metrica_17: inner ring step. 

- metrica_18: master temperature, corresponding to environmental temperature (ºC). 

- metrica_19: workpiece temperature (ºC). 

Metrica_7, metrica_8 and metrica_9 are quality dimensions measurements.  

Although the machine arania measures these three dimensions, the manufacturing machine 

NOVA9 only mechanizes on the raceway. The manufacturing machine NOVA10, which is 

located after the machine arania on the line, is responsible for machining the flange. If the 

machine arania detects a workpiece as defective due to the flange, then the workpiece is 

withdrawn from the process. These tolerances are defined so as not to have problems in the 

following manufacturing machine (NOVA10). That is, if a workpiece had an excess of material 

in the flange, this could cause that the grinding wheel collide with the flange surface at high 

speed and could break. The height measurement, together with the other measurements, in 

addition to the roller information on which it will be mounted is what defines whether a 

workpiece is defective or no at the end of the line. Today, the roller dimensions information 

on which the bearing is to be mounted is not available; there is no such unitary traceability. 

 

Á Grinding wheel change: 

Regarding NOVA11, each reference is manufactured with an initial grinding wheel diameter 

and FERSA (based on its experience) establishes a minimum grinding wheel diameter and 

when this value is reached the grinding wheel has to be replaced. For this machine, it is usually 

common to have several grinding wheel changes in the manufacture of the same reference 

over a period of time, when the grinding wheel reaches the minimal established diameter. 

Therefore, the grinding wheels are for one use only since they are completely worn out. 

However, the NOVA9 grinding wheel diameter is much larger than that of NOVA11 and the 

grinding wheel can be changed before being worn to grind workpieces of different references, 

and afterwards when the same reference applies, the previous grinding wheel is used until it 

is worn. In this case, what is usually common is that grinding wheel changes are made before 

being worn, that is, without having passed the established wear limit, due to changes of 

reference in manufacturing. Therefore, it may happen that the grinding wheel is changed due 
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to a  reference change and then that grinding wheel that already has a wear is reused in a new 

production of that reference.  

On the contrary, in NOVA11 the initial diameter of the grinding wheel is the same in each 

manufacture of a reference. This initial diameter value of the wheel is represented in metric 

7. The following table shows the maximum values of the wheel diameter and minimum values 

established for each of the three references studied: 

Reference Max grinding wheel 

diameter 

Min grinding wheel 

diameter 

9278 60 42 

52400 76 56 

65237 50 32 

Table 6. Maximum and minimum grinding wheel diameter of NOVA11 according to reference 

 

Á There is no common time base: 

The server which collects the machines data has the same time base as the manufacturing 

machines (NOVA11 and NOVA9), however, the quality measuring machines (diametroInterior 

and arania) have a local time that has a variable offset (due to delays or advances) with respect 

to the server. Namely, the variable 'date' available on the database for the NOVA11 and 

NOVA9 represents the real time (it is synchronized with NTP (Network Time Protocol) server 

of FERSA) but for the quality measuring machines represents the measurement time with a 

certain offset (it is not synchronized with NTP server of FERSA). 

However, for the data synchronization, that is, to match the workpiece manufacturing 

parameters with its measurements, it is necessary to have the times on the same common 

time base. This is especially important in this use case since the manufacturing time of the 

workpieces in the processes studied is at the level of seconds. 

The better solution to this problem would be to synchronize the timing of the measuring 

machines with the NTP server of FERSA.  This solution was discussed together with FERSA but 

due to the age of their machines this was not be feasible. Therefore, it was necessary to find 

another solution that allows to estimate the real time of measurement in a way closer to 

reality.  

There is another time variable ('capturedate') that represents the real time in which data is 

captured and stored in the database. The data of several machines is retrieved by a periodic 

task launched by the server. Therefore, the data may have different values of capture dates 

depending on the global data retrieval (the query is launched on a batch basis and captures 

data from all the machines). If the capture frequency is high, it may happen that the data is 

captured very close to the moment of its measurement and, therefore, in that case, the 

ŎŀǇǘǳǊŜ ŘŀǘŜ ǿƻǳƭŘ ōŜ ŀƴ ŜǎǘƛƳŀǘŜ ŎƭƻǎŜǊ ǘƻ ǘƘŜ ǊŜŀƭƛǘȅ ƻŦ ǘƘŜ ǘƛƳŜ ƻŦ ƳŜŀǎǳǊŜƳŜƴǘ όΨǊŜŀƭ 

ŘŀǘŜΩύΦ We use this capture time to estimate the real measurement time όǊŜŀƭ ΨŘŀǘŜΩύ. The 

following sections explain the proposed solution in detail, with its strengths and limitations. 
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As a summary, the following figures present the components and steps commented previously 

regarding the different time bases (date, capturedate) for the manufacturing machines 

(NOVA) and the inspection machines: 

 

Figure 15. Time base for the manufacturing machine (NOVA) 

 

 

Figure 16. Time base for the inspection machines (diametroInterior and arania) 

 

Á Unit traceability of the workpieces: 

In order to develop the DDMs it is necessary to correlate the manufacturing variables of the 

workpiece with quality measurements, i.e. to have the correspondence of the explanatory 

variables (NOVA11/NOVA9) and the output (diametroInterior/arania).  

The FERSA process does not have an identifier of each workpiece, as for example a laser 

marking, which enables to trace the parts along the process, however, the understanding of 

the process allowed to implement a synchronisation algorithm able to match the workpiece 

manufacturing parameters with its corresponding quality measurements. The different 

approaches studied, as well as the different situations to be taken into account were explained 
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in deliverable 3.2. In this document we explain the final algorithm used for a more extensive 

data set in detail in the following section in order to fit better the manufacturing process. 

In order to carry out the proposed synchronisation algorithm, it is necessary to have machine 

times on the same common time base, as well as to detect grinding wheel changes. The 

grinding wheel change information is not explicitly available in the database but an algorithm 

was designed which is capable of detecting it by calculation with the available metrics and 

some considerations that are explained later on. The proposed synchronisation algorithm is 

described as well in detail in the following sections, with its strengths and limitations. 

By taking into account the considerations above, the data were analysed and the DDMs were 

developed to extract valuable knowledge and to identify defect generation pattern in order 

to allow a deeper understanding of the causes which can arise defects generation. This 

understanding will help the operators to improve the quality control and to minimise the 

defective workpieces.  

 

3.3 Data Understanding and Data Preparation 

3.3.1 Data sets 

The data set of the inner bore grinding process analysed (NOVA11-diametroInterior) contains 

information from June to September 2019 of references 9278, 52400 and 65237, which are the 

references that correspond to the bearings that are most frequently manufactured and with special 

interest by FERSA to be analysed. Therefore, the data set to be analysed is wider than that considered 

in deliverable 3.2., considering a longer period of time and more references, following the first line of 

future work proposed in deliverable 3.2.  The number of observations in diametroInterior machine for 

references 9278, 52400 and 65237 in this time period is 34085, 36045 and 17008, respectively. 

On the other hand, the data analysis for the bearing process was extended to the raceway grinding 

process, complying with one of the future work lines that were proposed in the deliverable 3.2. For 

this process (NOVA9-arania), the data set analysed contains information from October 2019 to January 

2020 of references 9278, 52400 and 65237. The number of observations in arania machine for 

references 9278, 52400 and 65237 in this time period is 9499, 5005 and 14119, respectively. 

3.3.2 Explanatory Data Analysis 

Before preparing the data and applying the synchronization algorithm a descriptive analysis for the 

manufacturing machines (NOVA11, NOVA9) and the quality machines (diametroInterior, arania) were 

performed and the quality of data was analysed. Continuous variables are reported as statistic 

measures whereas qualitative variables are expressed as frequencies. 

NOVA11 

The following figures represent a descriptive analysis of continuous variables (metrica_1 and 

metrica_9) for each reference of NOVA11 dataset: 
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Figure 17.  Metrica_1 and metrica_9 for reference 9278 of NOVA11 

 

Figure 18.  Metrica_1 and metrica_9 for reference 52400 of NOVA11 

 

Figure 19.  Metrica_1 and metrica_9 for reference 65237 of NOVA11 

Regarding metrica_1, as shown in figures above, the values of the median are different for each 

reference since the final position of the X axis of grinding differs in each reference. However, 

specifically for references 9278 and 65237, a considerable standard deviation is observed, that is, the 

values move over a wide range of values, unlike the smaller data set used in previous iterations, 

described in deliverable 3.2. As advanced in the Business Understanding section, the values of metric 

1 are values relative to the reference position and, therefore, their value depends on the reference 

position in which it is located. Unfortunately, the reference position information is not available, which 

made it difficult to normalize the values of metrica_1. 














































































