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Executive Summary

This deliverable summarizes the outcome of STREBMaskt.1 andis related to the development

of Data Driven Models PDMs)and their corresponding performance in detecting and preventing

defects during productiorDue toproduction issues and the installation of the reaction disc test rig,

ZFhas not been abl provide sets of data, including reaction disc characteristics, whicmeaegled

to develop the DDM$or the booster applicationt KS O dzZNNBy & & (thelbe repdited’2CQa 5
in Deliverable 3.2The DDM for the ZF application will be furthewveloped as soon as the respective

data becomeavailableand it will be reported in a later deliverableETRI hadevelopedand reprted

the DDMfor the SP use case and ITAINNO4 develope@dnd reportedthe DDMsfor the FERSA use

case.STM asWPleader has supervised the deliverable.
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1 Introduction

1.1 Purpose of the document
This document describes the praseof data acquisitigrmnalysisand modellingor 2 use cases:

Rubberprofile extrusion- STANDARD PROFIL (SP)
Grinding bearing FERSA bearings (FERSA)

1.1.1 SP DDMs

In this use case, images of individual rubber products weslected The task involved possing
multiple imagesmeasuring the deviatioin specific points of interest, between each product and a
specification model and developing appropriate models to predict dafegiroducts based on
product tolerancesDifferent approaches were consider®r both the image processing part and the
creation of datadriven models The best approaches as a function of simplicity, speed and accuracy
were further developed and the compilation results were examined. Firellgdditional analysis was
performed to interpret the datadriven models and to aid the operator of the machin¢oytake
appropriate actions in order to prevent a defect product from actually being produéédita
acquisition and analysgepswere performed inPython

1.1.2 FERSA DDMs

In the second use case (FER8%) processes tperform the grinding of the bearingere considered.
These processes are comprised of two machines, the first one is the workpigneufacturing
machineand the second one is the quality inspection machine.

NOVA11s the manufacturing machine responsible for grinding the inner bore of the bearing and the
diametrolnterioris the corresponding quality machine measuring different bearing dimensions (inner
diameter, ovality, conicity, retalonNOVA3s the manufactung machine responsible for grinding the
raceway of the bearing anaraniais the quality inspection machine which measures the height, the
raceway and the flange of the bearing. Therefore, the following inrputputs time-series data were
available:

i.  Machine parameters (NOVA11/NOVA9)
i.  Measurements of the bearings (bearing dimensions as well as workpiece and environment
temperatures)

If a workpieceis outsidethe established tolerances foany bearing dimensionjt is considered
defective Ourtaskwasto developdata-driven models (DDMs) that allow identifying product failure
patterns as well as the prediction of the raceway manufacturing towards advising the operator
preventively about manufacturing tresdso the dimensional defects in workpieces can be previnte
and the number of defective workpieces can be reduced

Different approaches were considered in the DDMs development. Prewintise generation of
DDMs the production process of the FERSA ttasoughly anaysed andinderstood (manufacturing

and measurement processes, soft@atomponents, relevant parameters of the machines, timing,
actions done by the operator, possible failure causes, buffering, time bases, data retrieval, data
& 0 2 NI 3 $h¥ dataweyeRinalysed angre-processed The quality of data was analysed and a

STREAND DA4.1
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syrchronization algorithmwas developedto match the inputs (machine parameters) and outgut
(bearing dimensions; defectivieon-defectiveworkpiece)and to have thecorrespondencéetween
the explanatory variables (NOVA11/NOVA&) the output fiametrolnterior/arania).

Regarding the inner bore grinding process,this deliverable we present thenalysis and DDMs
consideringa larger data sewith respect to the considered dataset in the previous deliverable 3.2.,
with data collected from June to Septembdt the same time more relevant bearing referenées
FERS£2400 and 65237 in addition to reference 927A8ere considered. The DDMs were trained for
each reference. Regarding the raceway grinding process, the adatiata set covers data from
Octoba 2019 to January 2020gingthe period which presents more stable manufacturing conditions
and related data.

The acquisition of data were performed in Python and the data analysis and data exploitation in
Python and R.

1.2 Objectives and tasks

Concerninghe P use casdhe objectiveof Taskd.1. can be split in two main components. The first
oneis to accurately predict defect produdby using appropriate predictive models. The second is to
provide anin-depth analysisso that an operator may consult to perfm suitable actions in case a
defect product flag is raisedo prevent the defect product from actually being produc&dis process
can be splitin three step§ data acquisitiofrom the sensors on the production liné development

of state-of-the-art data-driven modes$ for defect pattern detectiorand iii)interpretation analysis of
the developed models fatefect product prevention

Concerninghe FERSA use caslata-based models were developed in Task 4.1. for the recognition of
behaviour patternsas well as for the prediction of manufacturing output trendsa way that
facilitates decision making whose purpose is the optimization of the manufacturing process. For the
development of these models, the same methodolagyTask 3.2 was follogd, but taking into
account more information from a more extensive data set. Also, the work done in Task 3.2. helped to
create modeldetter adjuestedto reality.

The algorithms will be run online and the results of the models will allow the generation ofsataain

will be displayed in the shefboor through a user interface, informing operators of certain process
conditions. These alarms will help operators to make a series of decisions to improve quality control
and minimize defective products.

Therefore, he objective of this task could be summarized as the development of the final models
whose resultwill help decisiommakingto prevent defective productdly generating realime alarms
at the shopfloor to notify operators of certain problematic situatis in the process.

121 SP

The project for the SP use case is appropriately structured into tasks that focus on achieving the above
objectives:

Extraction and gathering of input data (machine parameters)
Aggregations oinput data

STREAND DA4.1
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Extraction and processing ofitput data

Matching input and output datéindependent variables and targeariable)

Feature extractionengineering and selection

Development of datalriven models

Rejection/ Acceptance of images based on specification requiren(iiésances)
Additiond analysis to interpret the complex, blabkx models

122 HRSA

In order to meet the above objectives, the project for FERSA followed the agile and iterative CRISP
DM methodology (Cross Industry Standard Process for Data Mining), with the following tasks

9 Busness understanding to understand the context of the thematic
1 Data understanding to explore and analyse the data from the data sourckstedot problems
and possible solutiongelated to the available data and according to the business
understanding carrié out.
9 Data preparation to creatthe data structure on which the algorithm is trained
o Data preprocessing (e.g. generation of new variables, dimensionality reduction, etc.)
0 Matching input with output data (synchronisation algorithm)
1 Modelling:development of the DDMS by taking into account:
0 Exploration of data modelling approaches
0 Selection of the most suitable dataodelling approach
o DDMs development
o DDMs interpretation. Results

1 Deployment Correspondingo putting the models into production displaying théaems
derived of the models on a screen in the sHtgor. This taskis presented in detail in
Deliverable 2.

2 SP DDMg¢developed byCETRI

2.1 DataPreprocessing

2.1.1 Input Data

Training a Machine Learning model requires a set of independent variables (features) and a target
variable to be predicted. In the SP case the input data pertain to machinery parameters, as fetched
with appropriate sensors attached to the production line. The data are not fed directly to the models
but are rather first stored in database and then istg through an API. The input data for training

the models span 2 days of consecutive production time, creating 172,000 observations with a one
second interval step. Though the number of days may seem small, the number of observations they
pertain to ismore than enough for training wefierforming Machine Learning models.

We initially fetch data for all available channels (59) and then perform Exploratory Data Analysis to
check the correlation of each independent feature with the response (target) Variabminating

some of them during this process. We also check for data inconsistencies, missing values and outliers
that may arise due to temporary sensor failures or equipment errbisally, we also check for

STREAND DA4.1
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invariant features, which are machine paraters that have remained constant in the most part of

the production and do not actually affect the target varialdlais process eliminates nearly half of the
initial features, leaving 28 for creating the ML models. While this might look like a greabflos
information, in Machine Learning it is very crucial to have as good data as possible rather than much
data, thus quality is far more important than quantity.

Tablel.A glimpse into the first 10 variables of the dataset

5C000005 SCO00006 SCO00007 SCO00008 SCOO0009 SCO00010 SCO00011 SCO00014 SC000015 SCO0OO16

datetime
2019-09-12 00:00:00 0.0 46,5 386.0000 5001863  50.03000 4996310 49.15000 4000000 60.04020  59.80000
2019-09-12 00:00:01 0.0 46,0 385.0000 5002744 50.03319 4996012 49.00000 2666667 60.04228 59.76583
2019-09-12 00:00:02 0.0 47.0 3826667 5003825 50.08818 4995714 4895324 2666667 60.04435  59.74083
2019-09-12 00:00:03 0.0 46,5 3820000 50.04906 50.10000 4995415 4890000 3000000 60.04643 59.71385
2019-09-12 00:00:04 0.0 46.0 3857500 5005987 5014729 4995117 48.88223 3500000 60.04830  59.70000

Tablel provides a feeling of the initial data set as gathered through the API. All variables bear their
API encoding for space brevity reasons. The descriptive statistics of these variables can be found on
the next table.

Table2. Descriptive statistics of the input data

SC000005 5C000006 SC000007 5C000008 SC000009 5C000010 5C000011 SC000014 SC000015 5C000016

count 172800000000 172800.000000 172800000000 172800,000000 172500.000000 172800.000000 172800.000000 172800000000 172800.000000 172800.000000

mean 3604.080342 39.631115 389.073116 48188758 45229318 48.228021 48076632 3.206525 65.145603 65.118001
std 2823.522400 15.764442 211463413 2,576926 2525630 2486385 2408930 0804035 779445 7.211339
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 1439.906750 44500000 401333300 45032920 45033830 45.014100 45,150000 3.000000 60.000000 59.943310
50% 2405.000000 46.000000 407.750000 49940220 49925035 49.934255 48940535 3.000000 60.060780 60.048215
5% 5840.026000 47.000000 513.000000 50,008540 48993710 49.984210 50.062275 3.500000 74933062 74879510
max 9546.000000 73.000000 816333300 50.700000 50.400000 50.100000 50.200000 40,000000 75800000 T8.400000

It is obvious from Tabl2 that the input datapresenta variety of scales and sizes. Many algorithms
(such as Deep Learning) require the input data to lieérsamerange in order to perform reasonably
well. In ou case, though, this does not apphecausenve are going to use an advanced technique of
decision trees, since they outperformed all other tested algorithms. This technique, called Gradient
Boosted Trees is scalevariant meaning that it is not affectetly different date ranges and scales.
Thus, we do not need to proceed with feature normalization or standardization.

One last step in the input data pggocessing, is removing highly correlated data. When two features
are highly correlated (either positly or negatively), they are either redundant (since they bear the
same information regarding the movement of the response variable) or they can even be harmful for
the datadriven model due to multicollinearity, a phenomenon that renders the final modielerable

to high variance (so that minor changes in input variables can affect greatly the output variable).

STREAMD D4.1
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Figurel. Correlation heatmap

In Figurel we plot the correlations of the input variables. We can easily observestirae pairs of
features are strongly positively correlated (dark colours) and some others are very strongly negatively
correlated (whiter colours). For each of these pairs we have excluded the feature that affects the
target variable less.

After ingesting cleaning an@xamining the propertiethe inputdata, we can proceed with the output
data.

2.1.2 Output data

The output variable in SP case is the deviation between the target dimensions of the products and the
final product. There are six points of interaatwhich deviation is measured (A through E). These
points are shown in Figuizbelow.

A:26.1

-

F:23.0
C: 127
B:21.2

D: 4.6

-

Figure2. Target dimensions in the six points of interest
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In order to measure the deviation between target and actual dimensions, Sihdtaleid a special
piece of photographingand measurementmachinery called Profilometer. Profilometer takes
shapshots from a variety of angles, as the produced parts go through the production line and
calculates the deviations in real time. The profilomregeinstalled at a stage of the production line,
such that the product has taken its major form and no other major reforms are going to take place
afterwards.Figure X presents an abstract map of the production line where the Profilometer can be
observedwith the yellow highlight.
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Figure3. Map of the production line (Profilometer highlighted)

The data collected span the same period as the input data, for two consecutive days of production
and are also measured at the samserval of one second. Thus, we end up with a matrix of
dimensions %3814 6) pertaining to 53814 dimension measurements for each of the six points of
interest. A snapshot of the data is given in T&bkelow.

Table3. Output datasample

D_A D_B D.C DD D_E D_F

datetime
2019-09-12 11:16:09 26,685 21.800 12270000 5610000 25.060 22.620
2019-09-12 11:16:10 26.670 21.800 12253333 5630000 25.075 22.610
2019-09-12 11:16:11 26765 21.820 12266667 5653333 25.080 22.600
2019-09-12 11:16:12 26,740 21770 12206000 5654000 25.086 22.614

2019-09-12 11:16:13 26,640 21.786 12208000 5645000 25.924 22590

After ingesting the output data, we perform some geocessing, in a fashion simildout not
identical to the input data. We first want to make sure thalt measurements are on the second tick
mark, so we resample our data to the second, jodbe certain that no inconsistencies will survive to
the modelling part. Afterwards, we drop missing values that arise due to Profilometer or other
machinery errors. Likewise, we take care of minor outlier extreme values that are probably the
outcome offaulty sensors. We chose not to impute but rather to drop bad values (missing and outliers)
to avoidinducing bias to the Machine Learning models. After taking care of the output data set, we
proceed to concatenating these two datasets, in order to proogild the modelling part.

STREAND DA4.1
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2.1.3 Matching input with output data

Since the input sensor data from the production lines are ingested on a separate stream than the

STREAMS

image data, it is apparent that we must develop a process to match the input with the output data.

The input data from the production line are actually temporal data, which means that they come in
the form of a time series with respect to a range of variable parameters, formingndable where
m corresponds to time recor@ndn are thecorrespondingnachine parameterésensomata) in each
time step On the other hand, the output datéorm an array of observations with length
(corresponding to thenumber of interest pointsat which deviations are measurelly the

Profilometel). The correspondence bhgeen input and output data is schematically displayed in Figure

4 below(many to onerelation).

Vi V2

tl

t2

P1

P2

P6

tm+1

tm

Figured. lllustration ofraw input-output data correspondence

Thus, for each isgle ouput measurement from the Profilometer, we get multiple input

measurements. To proceed with the Machine Learning modelling part, we need to bring these data in
a-sigle line format (one line of input data for one line of output data. To accomplishgtial,we
performed a series of aggregatiotwsthe input data These are the followinfive:

 Mean
T Max
1 Min

i Standard Deviation
1 Skewness

In order to apply these transformations, we need to know the time window thkésplace before
the measurementareperformed at the Profilometer. Using the production line rmmap from Figure
3, we can calculate the time needed for a specific rubber part to travel from the line start to the
Profilometer. This time is the ratio between the distarared the producton line speed, i.e42.94

meters/ 18.5 meters/sec= 2.32 mimtes or 139.2 sec Thus, we need to calculate the above 5

statistical measures (first and second moments in the respective terminology) to transform the time
series data and establish a otwone relation between input and output data.

P FAOSNI FLILIX @Ay 3

to a 1x(5xn) array (for each Profilometer measurement). More specifically, for the time period t1 to

0KSAaS FAGS NI yaF2N¥IGA2Yya

g2

tm, we first calculate the mean of every variable V1 to Vns Tésults in a 1 by n array of values. We

repeat the same process, calculating the maximum of each variable for the same period of time,

resulting again in a 1 by n array). We continue in the stasieion for the rest of the transformations.
The final input vector of values is then concatenated with the output vector of size 1x6.
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V1_mean V2_mean Vn_skew P1 p2 .. P6

\\\\\\\\\\\\\\ =

t1-tm tm+1

Figureb. lllustration of ransformed input featurefor each Profilometer measurement

Thesame process is repeated for all timestamps where the are available measurements from the
profilometer, each one getting stacked below the previous (ffigure 6)

V1_mean V2_mean Vn_skew P1 P2 P6
tl-tm I tm+1

tr-tlast tlast+1

Figure6. lllustration of final inpuutput data scheme

After concatenatng all input and output datawe end up witha single table that contains as many
rows as the number of availalyofilometer measurements (after the respective gseocessingand
the number of columns is the sum bftimes the initialinput data plus the6 columns ofdeviation
measurements. This translates into a tablés8814rowsand145columns which is ready to be used
directly by the datadriven models.

2.2 SPDDMs

After completing all the above steps we can develop the dhitgen Machine Learningmodels to
predict deviation of product dimensions. Atis time, we are treating this problem as a regression
problem, i.e. a case where a continuous variable needs to be predicte@h\isgs binary one). Given
that the scope of the project iotpredict and prevent defect products (i.e. binary classification) we
can easily transform our numerical predictions to binary oness falsk isstraightforward we only
need tocompae the actual deviation to the factory requiremenf®lerances)and ifit exceeds this
threshold to classify the part as defeddowever, this will take place after the development of
appropriate models and the comparison of their performance.

2.2.1 The pool of suitable algorithms

Machine Learning Regression problems can be tdokiéh a plethora of alternative algorithmgVe

have considered a range sfichmodels leaving more buzzword algorithms like Neural Netwankis

since they require large amounts of data to outperform the set of selected algorithms. Moreover,
Neural Netwaks tend to be BlacBox models, in the sense that the mechanism behind them cannot
easily be interpreted and consequently used to explain how exactly the input data affect the target
variable. Taking all the above under consideration we selected thenioljpalgorithms to develop
respective models and compare their performance:

9 Linear Regression models
1 Ridge Regressors

1 Random Forest Regressors
1 Gradient Boosted Trees
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The selectedMachine Learningnodels are all very appropriate for modelling and perfargi
regressiorproblems, i.e. cases where we need to predictontinuous variable like in our casgsa-
visclassificatiorproblems wherehe target variable is binajy

9 Linear regression searches for the best linear fit between two variables. In saimeapply
multiple linear regression since with have more than one explanatory (independent) variable.
Linear regression presents good performance and is quick and easy to apply but on the
downside makes many assumptions on the structure of the datecande impacted by data
multicollinearities (as explained in section 2.1). Moreover, as its name implies, linear
regression can only uncover linear relations.

1 Ridge regression is a special case of linear regregsvmpplies a penalization scheme and
reduces the coefficients of some of the independent variables. In this fashion, ridge regression
is able to tackle the problem of multicollinearity and generally performs better, by giving the
model a better ability to generalize (predict new, unseen data).

1 Random forest regressors is a technique used to ensemble the result of many individual
decision trees into a single output. After developing a number of stdade trees, the
algorithm applies a voting scheme where each tree has an equal vote, andhéndmal
prediction is the average of all the summoned trees. This is a very powerful technique that in
many cases outperforms linear models but should be applied carefully, because it is prone to
overfitting.

1 Gradient boosted trees is another technigokeensembling decision tree outputs. Only in this
case, instead of parallelly creating trees and then casting a vote, boosted trees work serially,
each one building on top of the previous one. In this fashion, boosted trees are able to
gradually increasegyformance, giving higher attention to paradigms where the last tree has
not performed very accurately. Actually, boosted trees are considered -efatee-art
nowadays in structured, tabulatyle problems such as the one faced here, outperforming
even the more sophisticated Neural Netwebased models.

2.2.2 Crossvalidation parameter tuning

Each oneof the selected algorithms is very appropriate for the problem at hand, however they all
havea range of parameters thateedto be tuned in order taeach treir full capabilityWe have used
appropriate techniques and followed common practices to maximize the performance of each one
e.g. crossvalidation and grid searclCrossvalidation consists of randomly splitting the entire sample

in smaller suksamplesand testing the performance of the applied models in each of these smaller
parts of data. Grigsearch is a exhaustive search practice, in which alpfmed set of parameters is
permuted and their combinations are tested against the performance on eateasubsamples,
utterly reaching the set of parameters that presents the best overall performance across the entire
dataset. Once the model parameters are found we proceed with the comparison of the results in the
next section.

2.2.3 Feature selection

Machire Learning and Artificial Intelligence algorithms thrive on abundance of data. However, the
provided data have to be a) clean and b) relevant. We have already taken care of point (a) at the pre
processing step. Point (b) refers to the actual relation & imput variables with the dependent,

STREAND DA4.1
Pagel6



STREAM_0BGrant Agreement n. 723082 STREAMP’

output variable, in our case the deviation between specified and actual product dimensions. Not all
available variables are supposed to play a significant role in affecting the target variable: some of them
may be corelated with one another (and thus offer no added information to the model) while others
may be interdependent (e.g. input variable b is a direct outcome of input variable b and thus has no
value on its own).

Furthermore, havingoo many input variablesmé f S R (2 GKS WOdzZNES2F RAY
learning where the feature space of available solutions get so complicated that the algorithm
converges to a solution very slowly (or even never).

To avoid these pitfalls, the machine learningteamco®/én 6 A G K (KS WodzaAySaaqQ SE
factors that affect product output. The target was to find which parameters the machine operators

tinker in order to affect product dimensions, using their accumulated experience over the years.
Another goabf the exercise was to eliminate all variables that are concurrently changing or that are

direct results of other variables (as described above). We should highlight that this exercise pertained

to the specific dataset at hand and not the full working kfemige of SP, since these are the data upon

which the DDMs are developed. For example, the information pertaining to the IR lamps was
disregarded since, in the particular time period of the data set, theglayed constant values and are

thus of no modelhg useability.

Overall, the described process led to the elimination of a further 22 variables, leaving a total of six
input variables for the DDM development. These six variables pertain to the selected speed of the
extruders and the temperature of thevens as below:

1 Gas_Oven_Arda Temperature
Gas_Oven_Area2_Temperature
Gas_Oven_Aréa Temperature
Main_Extruder_Speed_Normalized
Auxiliar_Extruder_Speed_Normalized
9 Tricom_Extruder_Speed_Normalized

2.2.4 DDM Performance

=A =4 =4 =4

An important task in creating weblerforming Machine Learning models is the selection of the error
metric. In Machine Learning models that operate in continuous space (regression problems) there is
a wide range of such metrics. The most common ones are Mean Squared Error (MSE), Root Mean
Squared Eor (RMSE), and Mean Absolute Error (MABR)r metric of choice for developing the
algorithms is RMSkecause it gives a greater importance to larger errors since they are squared before
being averaged.

YO YO

However, we also report the corresponding performance of the models in terms of Mean Absolute
Error since it is more easily comprehensive by the reader and can also be used per se to understand if
the performance of the model is adequate for predictaefect products.
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Table4. RMSE results, SP case

RMSE

DA DB DC DD DE DF

Linear Regressior  0.090 0.088 0.120 0.101 0.150  0.099
Ridge Regressior  0.078 0.069 0.080 0.076 0.143 0.068
Random Forests 0.051 0.044 0.058 0.044 0.120 0.022
Boosted Trees 0.049 0.041 0.0 0.042 0.116 0.026

The power of a machine learning model lies within its ability to generalize, i.e. to perform well on new,
unseen data. For this reason, the common practice is to keep a holdout set that thel hnasdnot

been trained on in order to test its generalization abilifye rule of thumb is to split the initial data

in a 80%20% ratio(see Fig below).

Initial data set

Train set Test set

. . 1
80% 20%
Figure?7. Traintest split illustration

Following this common practiceye withheld part of the available data and after developing each
model, we used this dataset. Tablgand5 report RMSE and MAE respectively, oasidata.

Table5. MAE results, SP case

MAE

DA DB DC DD DE DF

LinearRegression  0.070 0.044 0.039 0.032 0.048 0.039
Ridge Regressior 0.055 0.031  0.034 0.028 0.047 0.029
Random Forests 0.044 0.027 0.028 0.019 0.035 0.018
Boosted Trees 0.040 0.022 0.031 0.014 0.0 0.020
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It is directly observable that all algorithms hagwerformed particularly well, reaching levels below 0.1
millimetres, across all dimensioriBhis means that, on average, all models fall less than 0.1 millimeters
away from the measured deviation between the target dimension and the actuaBgreamparig

this outcome with the actual deviation values (sample included in Table 3), we observe that the mean
percentage error ranges from 0.24% (dimension D) to 0.15% (dimension A).

Theseresults confirms ourpool of algorithmicchoicesas appropriate alternaties for the problem at

hand. Itis alsoclear that Gradient Boosted Trees have the best performance across the alternatives
examined They outperform even the weknown random forests in four out of the six dimensions
measured, reachintheir peakperformance of 0.01®n Dimension Di.e. they can predict with 0.01

mm accuracy the deviation in the dimensions of the part being produCaerall, Boosted Trees
perform better than all the other alternatives in the majority of the measured dimensions (@, B,

and E), followed by Random Forests at dimensions C and F. Thus, we select Boosted Trees algorithm
as the final DDM.

Lastly, we include the most important variables that affect the final prediction of the-diatan
models, according to LightGBM boodtees library. These can be used to tune the production lines
in order to improve the final product and ultimately to minimize defect products in the SP case. The
most important features according to the Gradient Boosting models are listed below:

Gas_Oven_Areal_Temperature
Tricom_Exiruder_Speed_MNomalized

Gas_Oven_Area’l_Temperature

feature

Gas_Oven_Area? Temperature

Main_Extruder_Speed_Mormalized

Auxiliar_Extruder_Speed_MNormalized

=

1000 2000 3000 4000
mportance

Figue 8. Average Feature Importan@ecording to Gradient Boosted Trees

The appearance of the input variables in this graph is by descending order, hence tinkering with the
top variables affects the end pduct the most.The importance of the features is generatig the
algorithmafter calculating the times each one of them was usegiit the branches upon which the
Boosted Trees were creatéfbr a mor ethorough explanation refer to section 2.3 below

This figure contains the average feature importance acrossugut dimensions measured and not
for each specific onéviore on the actual utility and usability of these (as well as the other) variables
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in the prevention of defect productscross all snensionss contained on the next section where the
impact of them on the target variable is further analysed with an appropriate tool.

2.3 Prescriptive analysis forefect prevention

The datadriven models that were considered and developed above are thst rappropriate and

most wellperforming solutions according to the scope of the task, which is defect product prediction.
To complement the analysis so far and to provide a holistic solution that will allow factories to prevent
the generation of defect pmucts (when detected), one lastmportant step is required: the
exploration of the relation between the input and output variables and, thus, how the operator can
tweak machine parameters to timely and effectively prevent the creation of a defect product.

Gradient Boosted Trees, despite displaying stdtéhe-art performance in structured data machine
learning problems, are still considered as btaok algorithms, due their development process. A
Boosted Tree is a sequence of decision trees, where eaehuwaiids atop the previous one, correcting

the residuals, i.e. the errors the previous tree did. In each new tree the algorithm decides upon which
variables to make a binary split in order to construct the tree. This is achived by calculating how close
to the actual value the predicted one iS8Hen and Guestrin, 2016). This process however does not
allow the practitioner to take advantage of the developed model in order to take preventative action
despite allowing him to correctly predict the final output

To tackle this problemnithis section we apply the latest developments in machine learning model
interpretation tools. More specifically we employ the Python library SHAP (Lundberg and Lee, 2017)
which uses Game Theory in a competitive gavhdifferent simple linear models that race against
each other in order to construct a sophisticated analysis of how each input variable affects the target
variable. In our case, the target variablare6, i.e. thedeviatiors between thefactory specifications
andthe profilometermeasurements at thé points of interesion the profile What we seek to find is,

when a product is flagged as defect by the ddteven models, which variables we should tweak and
how (by lowering or increasing their values) to restoremality (i.e. prevent the creation of defect
products.

We provide belown Figure® to 14the output graptsof SHAP analydigr each of the six dimensions
of focus,andthen we elaborate on how it can be used to aid the cause of zero defects.

The figures belowcontain all the variables that are deemed important by SHAP, with variables at the
top being more important as they can explain a wider variance of the target variable. In thpaitjht

of eachfigure there is a legend which indicateachvariable® values, ranging from blue to red, with
bluer shadescorresponding to low values and redesto highvariablevalues

The graph itself displays how each independent variable affects the target variable, which in this case
is the deviation fromdctory requirements. The horizontal axis contains SHAP values, with negative
values pertaining to smaller targetriable values and positive values corresponding to higher target
variable values.

For example, in the first Dimension (A), higher Coatmo§lB Temperature values are associated with
high deviation values while lower temperatures pertain to decreased deviation. On the other hand,
Tricom Extruder Pressure is inversely related to deviation, with low values being associated to high
deviationsand viceversa.
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It is noteworthy that all SHAP figures do not correspond to each other and they also may differ from
the variable importances as calculated by the Boosted Trees algorithm in Figure 8 Bilemzased
algorithmsuse a purity measure likentropy to calculate how well the data can be split, in order to
select a variable as a split no(kee e.g. Breiman, 20QYariable importance is thus the descending
order in which variables have been used to split the trees. On the other hand, SHARfeseat,
modelagnostic technigue, that uses Game Theory to calculate how each and every sigle observation
has been affected from the rest and which variables led to observable result. A more thorough

explanation can be found on the respective paper taydberg and Lee (2017).

High

Auxiliar_Extruder Speed Normalized
Gas_Owven_Area2 Temperature

Gas_Oven_Areal Temperature

Tricom_Extruder_Speed_Normalized

Feature value

Main_Extruder_Speed_MNormalized

Gas_Owven_Aread Temperature

| | I I I l
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SHAP value (impact on model output)
Figure9. SHAP Analysis dimension A
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Figurel0. SHAP Analysis dimensiBn

STREAMD D4.1
Page?1



STREAM_0BGrant Agreement n. 723082

Auxiliar_Extruder Speed Normalized
Gas_Owven_AreaZ_Temperature
Gas Oven_Areal Temperature
Tricom_Extruder_Speed Normalized
Gas Owven_Aread Temperature

Main_Extruder_Speed_Mormalized

Auxiliar_Extruder Speed MNormalized
Gas_Oven_Area?_Temperature
Gas_Oven_Areal_Temperature

Tricom_Extruder_Speed_Normalized
Gas_Oven_Aread Temperature

Main_Extruder_Speed_Normalized

Gas_Owven_Areal_Temperature
Gas_Owven_Area2 Temperature
Tricom_Extruder Speed MNormalized
Main_Extruder_Speed_MNormalized
Gas_Owven_Aread Temperature

Auxiliar_Extruder_Speed_MNormalized

o

2IREAMS
High
— v+
Y
2
3 -+ . 5 ]
L
—+— - E
E
' LI_
L * -
| I 1 1 1 | Low
0.3 0.2 0.1 0o 01 02 03
SHAFP value (impact on model output)
Figurell SHAP Analysis dimensiGn
High
+ . s
Y
e
. e + g
=
- ene = +l =
D
w
+ -
- - - - L L] i+
I 1 | I [ 1 | | Low
05 0.4 03 0.2 0.1 00 01 02
SHAP value (impact on model output)
Figurel2. SHAP Analysis dimension D
High
o
2
- 5
g
2
&
w
L

STREAMD D4.1

I | I
-0.2 -0.1 00 01 0z
SHAF value (impact on model output)

Page?22



47 0
STREAM_0BGrant Agreement n. 723082 STREAMD

Figurel3. SHAP Analysis dimensién
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Figurel4. SHAP Analysis dimensiBn

The use of thsegraplsfor the prevention of defect products pretty straightforward. Starting from
the most importantvariables at the top of each gragmd traversinglownwardsthe less important
independent variables (machine parameters), a machine operator is aldalitrate the machine
parameters and adjust them accordingly, in order to preventdieation of a defect at the end of the
production phase. For exampl&) the case of dimension Aif the algorithm predicts gositive
deviation (the product dimensions ararger than the template product), the operator should
decrease thé\uxiliar Extnder Speedsincelower values of this variable should lead to decreaseof
deviation fegatively thus in the correct direction). On the other hand, ihegativedeviation is

predicted (product dimensionsmalleri Ky (G KS (SYLX I (i Sdeciease thekMain 2 LIS NI

Extruder Speedsincelower (blue)values of this variable are associated withircreasein deviation.
Another interesting finding on the SHAP analysis is that different variables have different impact on
the six dimensions. For examepthe speed of the main extruder shows an inverse relation with the
deviation in most dimensions: low values of this variadole found to lead to increased deviations
between actual and target dimensions. This is not true in Dimension 6 however; ita@dower
values lead to a decrease in deviations, a finding that should be taken under consideration when
adjusting this parameter during production.

We should note that since this is designed as a Decision Support System rather than a fully automated
solution, great values should be placed at th¢ JSNJ 2 ND& SELISNASYyOSd ¢KA A&
of the Boosted Trees and the mesaalysis provided by SHAP, should be taken under consideration
and be evaluated in order for the machine operator to gwoe an informed decision on which
direction and what magnitude changes he should make to each variable, to prevent a defect product.

2.4 DDM integration in the Control Module

As introduced in deliverables 4.3 and 4tke core of the control module is the ROM that allows to
predict the profile shape based on the process parameters measured in the line. Thanks to the ROM
rapid response, it is possible to anticipate errors before they appear at the end of the line end minimize
deviations from the optimal profile shaghrough an optimization module that compute the optimal
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values for the identified set of controllable parametdbsie to the complexity of the chemical process
that occurs inthe SP manufacturing lineyhichis influenced by the specific material properties of
each bach, it is necessgrto periodically updatehie ROM settings,ot ensure that the predictions
remain accurateThis is doneghrough a recalibration module that takes historic values for process
inputs and outputs taninimize the error between ROM predictioaad real process outputs.

The DDM results presented in previous sections, therefore, need to be integrated in the Control
Module to provide additional insight on the production process and propose additional corrective
actions where the ROM might not Iseifficient. From the results of the SHAP analyignks to the
different nature of the DDM with respect to the ROM, decisioakingrulescan be definedo support
operators to fine-tune the process when some deviation is still present despite ROM based
optimization Being based on a physical simulation model, in fact, the ROM could include some
simplifications in parameters representation, or could fail in modeling some of the inherent variability
of the process that is due, for example, to the spedifiaracteristics of each single machi@n the

other side, DDM is based on real data measuretine and can provide information on process
parameters that are difficult to model physically.

SHAP analysis provides insight on the most relevant process parameters that affect the profile shape,
giving indications on which parameter has higher impact on a specific profile dimension and how it
affects that dimension, meaning positive or negative r@ation. An operator can therefore use this
knowledge toincrease or decrease machiset pointsdepending on theprofile shapedeviatiors
measura at the end of the lineThis process, when coupled witle operator@ experience, can lead

to an improvement operformances over the sole ROb&sed optimization implementation.

When expanding the view of the STREBIMsystem from a single production line to multiple lines in
different factories around th world, the relevance of a DDbased decision support tooklsomes

more evident, as the same ROdnbe used to describe multiple lines, being no differences in the
physics of the process, while a specific DDM for each line could help identifying each line inherent
differences and provide a specific set of suppatesfor fine-tuningfor the operators othat line.

The optimization module, the decisianaking support rulesand the recalibration module are
implemented in parallel to control the process behavior towards zero defect manufacturing. The
figure below povides a view of theompletecontrol loop schemdor the SP production line
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3 FERSA DDMdeveloped byITAINNOVA)
3.1 DDMs Overview

An agile and iterative methodology based on CRIBP(Cross Industry Standard Process foreDat
Mining) has been followeth the development of the FERSA use case thigfollowing aimin each
of the phases:

- Business Understandinghd first task carried out was to understand theanufacturing
process of the FERSA machisesthatthe casuistries offte process can be detectexhd
subsequently analggl. Therefore, this previous phase is necessary for the anadysls
interpretation of the data as well as to define the relevant KPIs whefedosthe attention.

- Data Understanding: The next task was talgse the data and detegroblems and possible
solutions according to the previous tashysinesainderstanding)rhis task allows to identify
dataquality and data coherencproblems, enabling after an exploratory analysis to find out
knowledge about th data

- Data PreparationOnce the data were analysedhe nexttask wago pre-processhe data so
that they would be suitable for training in subsequent staggy addressing also
synchronisation between manufactured workpieces and related measuresngot by
inspection quality machines).

- DDMs development for the NOVA1l machine and output inspection machine
(diametrolnterio): Finally,the models were trained on a dataset containing input features
with outputs (target variables}hento give an intepretationto the model.

- Deployment:Once the final models that generate knowledge are created, thedagkof the
methodology is the deploymenthatis, putting the models into production. In particular, the
deployment will be carried out in a virtual machineERERSA where alarms derived from the
modelling of data will be generatednd displayed on a screen in th&opfloor, so the
operators are notifieaf possible problems for producticaandthey can intervene, optimizing
the manufacturing proceshistaskis explained in deliverable 5.2.

3.2 Business Understanding

In previous iterations, presented iDeliverable 3.2the Business Understanding phase allowed to
detect casuistries of the process and considerations to be taken into account for the development of
DDMs. The development of the different phases of ®RISBM methodology, by taking these
considerations into account, enabled to make decisions and to improve the different algorithms in
successive iterations, addressing the project in a more effectaye thanks to that previous context
learning.

Following we present the most importanonsiderations that have been taken into accoantl how
we have worked to solve therand what actions we have carried dot the development of the final
models

STREAND DA4.1
Page?26



rs
b AR
i

w 0
STREAM_0BGrant Agreement n. 723082 STREAMD

A Accesible variables and control in process:
Regardind\OVA11i

As stated in théeliverable3.2, the Marposs(external componentexecutes the contrein-
process, masking the effects thie values of themetricstowards the manufacturing results
obtained in NO\A1l For example, the Marposperforms a compensatiorfor the
manufacturing deviations of eaatorkpiecethat will be affected in the metricShis Marposs

unit has access to the inner parameters and related variables of the machining process such
as powerconsumption, real time angular speed of the grinding, real time angular speed of th
part to be machined and so o#nyway, these variables are not accessible from external
systems, i.e. they are a black box where the output of the process itself ingh@dsition of

the ginding wheel (metrica_1). Besidesthe internal implementation of the Marposs
algorithms is not available, so it is not possible to know how the Marposs carries out the
compensations or the contréh-process. Furthenore, due to the acces possibilities to
NOVAL11, only 9 parameters can be retrieved from the NOVAL11 configuration and machining
process; these parameters are the metrficean NOVA11 (metrica_1 to metrica_9Ye access

this information in real time from python using the PotSQldatabase adaptePsycopg?2

The metrics available fahe workpieces manufactured in NOVAL11 are:

- date: machine date when quality measurements are performed.

- capturedate: capture date when data is stored in database.

- metrica_1: Ending position X Axle (yripal position of the centre of the grinding wheel
towards a position reference system

- metrica_2: Diamondruing® frequency fumber of units made between two truing
processey frequency of thediamond truing proceswhichis carried outo restorethe
wheelshape(this metric is a configuration value for the control system)

- metrica_3: Fine Grinding Speed (mm/s), linear speed of approximation of the grinding
wheel towards the inner surface of the workpiece (this metric is a reference for the control
system)

- metrica_4:Axle Z oscillation speed (mm/nthis metric is a reference for the control
system)

- metrica_5: Driver spindle speed (r.p.m.), angular speed of the workpiece whose inner
diameter is to bemachined(this metric is a reference for the control sgst).

- metrica_6: Grinding Wheel speed (mm/s), linear speed required in the contact among the
inner surface of the workpiece and the outer surface of the grinding witleisl metric is
a reference for the control system)

- metrica_7: New Grinding Wheel Diamet (um), initial value of the grinding wheel
diameter when the grinding wheel is replaced (this metric is a reference for the control
system)

I Truingis the term used to describe the removal of material from thiting face of thewheel to bring every
point of thegrinding surface concentric with the machine spindle (to establish concentricity) and to introduce a
form (shape) intahe wheel. Truing is done when a newheel is installed pefore it's used for the first timand
after grinding a certain number of pies(truing frequency, in orderto restore thewheel shapeDiamond truing
and dressing tools are used to achieve maximum grinding wheel performance.
STREAMD D4.1
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- metrica_8: Diamond dressing speed (mmif), linear speed of the diamonttuing
process of the grinding wheel which takglace with the frequency indicaté&u metrica_4
(this metric is a reference for the control system).

- metrica_9: X axle increase summation, internal metrics of NOVA11 which is related to the
amount of corrections based on an estimation of a linear wedhefgrinding wheel.

Metric 9 is not a machine parameter, but it is a calculated metric that is useful for calculating
the current grinding wheel diameteMetrics 2 3, 4, 5, 6, 7 an8l are reference parameters

for the control systemTherefore, Metric 1 igte only metriaelated to the real manufacturing

and the result of Marposs and its value dependent on other factors, which are not visible or
controlled outside Marposs. Sdy only onsidering these metricsthere is a lack of
representative metrics thatadequately explainthe processand allows optimizingthe
manufacturing processWith the aim of explaining the process better, we generated new
variables based on the manufacturing context and by considering the available data, such as
the current grinding wheel diameter. These variables are described and analysed in the
following sections.

On the other hand, as Marposs itself commands the actions to perform during mechanization,
the causality and prediction of the outcome dilmmetrolnterioris affectedand masked by
Marposs behaviodn addition to that, the range of valués metric 1 may vary, depending on
where the origin of the reference position system is located; however, the reference position
information is not available, what would allow databe normalized to a common scale.

Due to these reasonghe last versions of the DDMsm at the defect pattern recognition
based on the information analysiegardingNOVA11 manufacturing conditions (e.g. grinding
wheel diameter), environmental conditns (temperatures)dimensionaimeasurements and
defect typology which can arise during the manufacturifigese modelsill enable a better
understanding of the causes which can lead to defect generation anteljlithe operators
improve the quality cotrol and to minimize the defegbroducts.The different approaches
used for pattern recognitioare described in the following sections.

Regardingliametrolnterior.

The available metrics for every measured workpiece are:

- date: machine date when quality rasurements are performed.

- capturedate: capture date when data is stored in database.

- reference: bearing reference

- batch: bearing reference batch

- metrica_1:workpiece temperature (°C).

- metrica_2:master temperature, corresponding to environmental tempera{tC).

- metrica_3: upper inner bore diameter tolerance (mm).

- metrica_4:lower inner bore diameter tolerance (mm).

- metrica_5:upper ovality tolerance (mm).

- metrica_6: lower ovality tolerance (mm).

- metrica_7: measures the compensation of deviations propobgddiametrolnterior
machine. The rules on which it is based are explained in deliverable 3.2.
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- conicity: conicity tolerance (mm).
- retalon: step or retalon tolerance (mm).
- piezaok: leolean variable that indicates whether the part is defectimeok)or not (0k).

Metrica_3, metrica_4, metrica_5, metrica_6, conicity and retalon guality dimensions
measurements

For each manufacturing reference, each dimension has a defined minimum tolerance and
maximum tolerancelf the workpiecemeasurements foany of trese dimensionare below

or abovethe related tolerances, then thevorkpieceis defective. In the case of a defective
workpieceby the innetborediameterdimensionwe differentiate between defective by being
below the minimum tolerance (there imaterial abowe the minimum toleranceén the bore

and, therefore, it is smaller than it should; theorkpiecemust be reworked) and by lgg
above the maximum tolerance (thinding wheehasgrindedtoo much and thebore is too

big, i.e.there is a lack of material)

Although all workpieces that are outside the tolerance raiage considered as defective
workpieces, it is interesting to differentiate between types of failures since each of the
dimension failures may require a different action. Fosraple, it is not the same to consider

a defective workpiece by diameter below the tolerance, which can be reworked, than by
diameter above the tolerance, where the workpiece is already discarded. In the failure pattern
recognition model, we take into accoufailures due to conicity, ovality, retalon, diameter
below tolerance (super material) and diameter above tolerance (lack of material).

However we detected that workpieces with values in the boundary of the limit tolerances
were stored in the data basas defective workpiece, when they should be stored as-non
defective. This is due tihe factthat the dimension metrics are stored in millimetres with an
accuracy of 3 decimals, resulting from truncating to 3 decimals. Assume, for example, the case
of a workpiece with avzalue in the diameter metric of 0.013, we would not be sure if the
current measurement is 13 microns (ndefective workpiece) or 13.6 microns (defective
workpiece). This data storage problem was communicated to FERSA, which quickly corrected
it thereafter, however, the training data set previously considered still contains that problem.
Therefore, in the results presented we consider as faiageording toone dimension those

that are not exactly at the tolerance limishileasdue to the truncating itd not feasible to
assignt asafailure with the corresponding dimension.

RegardindNOVA9
The available metrics are similar to those of NOVA9:

- date: machine date when quality measurements are performed.

- capturedate: capture date when data is stored inatmase.

- metrica_1: Ending position X Axle (um), final position of the centre of the grinding wheel
towards a position reference systerthis metric is aaference for the control system,
which can be set by an operator.

- metrica_2: Sparkling time (secondsparkout time in the grinding process, i.e. the
required time to complete a grinding pass through the whole inner surface ofdhgry
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to eliminate in that wayinconsistencies in the machine or workpiece (this metric is a
reference for the control systn).

- metrica_3: Fine Grinding Speed (mm/s), linear speed of approximation of the grinding
wheel towards the inner surface of the workpiece (this metric is a reference for the control
system)

- metrica_4: Diamondtruing frequency fumber of units made between two truing
processey frequency of thediamondtruing processhat is carried outn order torestore
the wheelshape(this metric is a configuration value for the control system)

- metrica_5: Grinding Wheel speesperipheraE (mm/s), linear speed required in the
contact among the inner surface of the workpiece and the outer surface of the grinding
wheel (this metric is a ference for the control system).

- metrica_6: Driver spindle speed (r.p.m.), angular speed of the workpiece whose inner
diameter is to bamachined(this metric is a reference for the control system)

- metrica_7: Current Grinding wheel diameter (uo) each manufactured workpiece

- metrica 8: Diamond dressing speed (mmih), linear speed of the diamonttuing
process of the grinding wheel which takes placithe frequency indicateth metrica_4
(this metric is a reference for the control system).

- metrica_9: X axle increase summation, internal metrics of NOVA9 which is related to the
amount of corrections based on an estimation of a linear wear of the guanaheel.

Unlike NOVA 11, NOVA 9 has a new varighkdrica_7)whichis the current diameter of the
wheel, which in the case of NOVA11l has to be calculdiegkever, the metric value 1 is a
reference value and not a real manufacturing valDa the other land, NOVA9 has no control
in-process and, therefore, therre no external agents thamaskof the effects of the metrics
Therefore, for this process the generated DDMs are related to the prediction of the raceway
dimension given the historical dataéithe manufacturing process parameters. These models
provide information on the behaviour of the fututeend so that defects can be prevented in

the workpieces.

In thedata Understanding section, the previous metrics are analysed.
Regardin@rania

The médrics available for every measurement are the deviations with respect to the nominal
of the following dimensions: height, raceway and flange.

The metrics available for every measurement are:

- date: machine date when quality measurements are performed.

- capturedate: capture date when data is stored in database.

- reference: bearing reference

- batch: bearing reference batch

- metrica_l:boolean variable that indicates whether the part is defec{weok)or not (0k).

- metrica_2: boolean variable that indicates wheth the master workpiece is being
measured as machine calibration measure.

- metrica_3:inner ring program.

- metrica_4:inner ring program + step program.
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- metrica_5:Height+Raceway+Flange Progrdnpgint).

- metrica_6: Height+Raceway+Flange Programa(nt).

- metrica_7: height tolerance (mm).

- metrica_8: raceway tolerance (mm).

- metrica_9: flange tolerance (mm).

- metrica_10: inner ring upper parts.

- metrica_11: inner ring middle part.

- metrica_12: inner ring lower part.

- metrica_13: inner ring upper ovality.

- metrica_14: inner ring lower ovality.

- metrica_15: inner ring obliquity.

- metrica_16: inner ring taper.

- metrica_17: inner ring step.

- metrica_18: master temperatur&orresponding to environmental temperature (°C).
- metrica_19: workpiece temperature (°C).

Metrica_7, netrica_8 and metrica_8re quality dimensions measurements

Although the machin@araniameasures these three dimensions, the manufacturing machine
NOVA9 only mechanizes on the raceway. The manufacturing machine NOVAL10, which is
located after the machinarania on the line, is responsible for machining the flange. If the
machine arania detects a workpiece as defective due to the flange, then the workpiece is
withdrawn from the process. These tolerances are defined so as not to have problems in the
followingmanufacturing machine (NOVAL0). That is, if a workpiece had an excess of material
in the flange, this could cause thtite grinding wheel collide with the flange surface at high
speed and could break. The height measurement, together with the other measutenien
addition to the roller information on which it will be mounted is what defines whether a
workpiece is defective or no at the end of the line. Today, the roller dimensions information
on which the bearing iotbe mounted is not availablehére is @ such unitary traceability.

A Grinding wheel change:

Regarding NOVAl&ach reference is manufactured with an initial grinding wheel diameter
and FERSA (based on its experience) establishes a minimum grinding wheel diameter and
when this value is reachetié grinding wheéhas to be replaced. For this machine, it is usually
common to have several grinding wheel changes in the manufactuteecame reference

over a period of time, when the grinding wheel reaches the minimal established diameter.
Theefore, the grinding wheels are for one use only since they are completely worn out.

However,the NOVAQrinding wheel diameter is much larger than that of NOVA11 and the
grinding wheel can be changed before being worn to grind workpieces of differenénefes,

and afterwards when the same reference applies, the previous grinding wheel is used until it
is worn. In this case, what is usually common is that grinding wheel changes are made before
being worn, that is, without having passed the established riait, due to changes of
reference in manufacturingrherefore, it may happen that the grinding wheel is chandjesl
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to a reference change and then that grinding wheel that already has a wear is reused in a new
production of that reference.

On the contrary,ri NOVALL the initial diameter of the grinding wheel is the same in each
manufacture of a referencélhis initial diameter value of the wheel is represented in metric
7. The following table shows the maximum valoéthe wheel diameter and minimum values

established for each of the three references studied

Reference Max grinding wheel Min grinding wheel
diameter diameter

9278 60 42

52400 76 56

65237 50 32

Table6. Maximum and minimum grinding wheel diameter of NOVAté&ording to reference

A There is no common time base:

The servemwhich collects the machinedata has thesame time bases the manufacturing
machines (NOVA11 and NOVA9), however, the quality measuring magiamastrolnterior
andarania) have a local time that has a variabliéset (due todelays or advances) witkspect

to the server.Namely the variable'date' available on thedatabasefor the NOVA1l and
NOVAG9 represents the real time (it is synchronized with NTP (Network Time Protocol) server
of FERSA) but fohe quality measuring machines represents the measurement time with a
certain offset(it is notsynchronized with NTP server of FERSA).

However, br the data synchronization, that is, to match theorkpiece manufacturing
parameters with its measurements, it is necessary to have the times on the same common
time base.This isespecially important irthis use casesince the manufacturing time of the
workpieces in the processes studied is at the level of seconds.

The better solution to this problem would be to synchronize the timing of the measuring
machines with the NTP servef FERSAThis solutiorwas discussed together with FERSA but
due to the age of their machines thisasnot be feasibleTherefore, it was necessary to find
another solution that allows to estimate the real time of measurement in a way closer to
reality.

There isanother time variable (‘captudate’) thatrepresentsthe real time in which data is

captured and stored in the databasehe data of several machines is retrieved by a periodic

task launched by the server. Therefore, the data may have different valussgptire dates

depending on the global data retrieval (the query is launched on a batch basis and captures
data from all the machines). If the capture frequency is high, it may happen that the data is
captured very close to the moment of its measurement atherefore, in that case, the

OF LWadz2NBE RIFGS ¢g2ddZ R 0SS Iy SadAyrasS Oft2asSNI a2
R (i 9@ usethis capture time to estimate threal measurement timed NB | f . THERF 1 S Q0
following sections explaitihe proposed soltion in detail with its strengths and limitations.
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As a summary, the following figures present the components and steps commented previously
regarding the different time basegidte, capturedatg for the manufacturing machines
(NOVA) and the inspection rthines:

NOVA
After each manufacturing, machine
parameteres are sentdata | date |

via RS232 - Time in RASP when it is notified
RASP _—> - RASP is sync with NTP server*

- Occasional delays/advances of
Periodically data are sent vs/
the clock

to DB
_
a capturedate

- Time in DB when it is saved
- DB is sync with NTP server

Figurel5. Time base for the manufacturing machine (NOVA)

INSPECTION Local Time in SIEMENS af
! _ t
After each measurement, machine kpiece is m o

. workpiece is measured
parameters are storedin l - No svnc with NTP server
SIEMENS Screen FTP y

- Operators can modify local clock
SIEMENS _— >

Client FTP retrieves info capturedate

stored in SlEM_Ef\!S screen - Time in DB when it is saved
FTP and saved it in DB - DB is sync with NTP server

- Client FTP retrives info of more
E— machines

- Period of retrieving is variable

and can be up to several minutes

- several workpieces can have

same capturedate

Figurel6. Time base for the inspectianachines (diametrolnterior and arania

A Unit traceability of the workpieces:

In order to develp the DDMs it is necessary to correlate the manufacturing variables of the
workpiece with quality measurements, i.e. to have t@respondence of thexplanatory
variables (NOVA11/NOVA&Nd the output iametrolnterior/aranig.

The FERSA process does$ Imave an identifier of each workpiece, as for example a laser
marking, which enables to trace the parts along the process, however, the understanding of
the process allowed to implement a synchronisation algorithm able to match the workpiece
manufacturing parameters with its corresponding quality measurementhie different
approaches studied, as well as the different situations to be taken into acemreexplained
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in deliverable 3.2. In this document we explain the final algorithm used foore extersive
data setin detail in the following section in order to fit better the manufacturing process

In order to carry out the proposed synchronisation algorithm, it is necessary to have machine
times on the same common time base, as well as to detect gindiheel changes. The
grinding wheel change information is not explicitly available in the database but an algorithm
was designedvhich iscapable of detecting it by calculation with the available metrics and
some considerations that are explained later on. Theppsed synchronisation algorithm is
described as well in detail in the following sections, with its strengths and limitations.

By taking into accourthe considerations abovéhe data were analysed and the DDMs were
developed toextract valuable knowledgand to identify defect generation pattern in order

to allow a deeper understanding of the causes which can arise defects generation. This
understandingwill help the operators to improve the quality control and to miréenthe
defective workpieces

3.3 DataUnderstanding and Data Preparation
3.3.1 Data sets

The data set of theinner bore grinding process analysed (NOVAdlidmetrolnterior) contains
information from June to September 20189 references 9278, 52400 and 6523vhich are the
references that correspontb the bearings that are most frequently manufactured and vegecial
interestby FERS# be analysd. Therefae, the data set to be analgd iswiderthan that onsidered

in deliverable 3.2., atsidering a longer period of time and more referencedpfuingthe first lineof
future work proposed in deliverable 3.Z:he number of observations in diametrolnterior machine for
references 9278, 52400 and 65237 in this time period is 34085, 36045 and 17008, respectively.

On the other hand, the data analy$ar the bearing process was extended to the raceway grinding
processcomplying with one of the future worknesthat were proposed in the deliverab®2. For

this process (NOVA&rania), the data set analysed contains information from October 201&hioady

2020 of references 9278, 52400 and 65237. The number of observations in arania machine for
references 9278, 52400 and 65237 in this time period is 9499, 5005 and 14119, respectively.

3.3.2 Explanatory Data Analysi

Before preparing the data and applyititge synchronization algorithra descriptive analysis for the
manufacturing machines (NOVA11, NOVA9)thrdjuality machinegdiametrolnterior, aranig were
performed and the quality of data was analysé&tbntinuous variables are reported as statistic
measures whereas qualitative variables are expressed as frequencies.

NOVA11l

The following figures represent a descriptive analysis of continuous variables (metrica_1 and
metrica_9) for each reference dfOVAlldataset:
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Figurel?7. Metrica_1 and metrica_9 for reference 9278 of NOVA11l

Figurel8. Metrica_1 and metrica_9 for reference 52400 of NOVA11l

Figurel9. Metrica_1 and metrica_9 for reference 65237 of NOVA11l

Regardingmetrica_1, as shown in figures abovéhe valuesof the medianare different for each
reference since the final position of the X axis of grinding differs in each referéloveever
specifically for references 9278 and 65237, a considerable standard dev&tibserved, that is, the
valuesmove over a wide range of values, unlike the smaller data set used in previous iterations,
described in deliverable 3.As advanced ithe Business Understanding section, the valaémetric

1 are valueselative to thereference position and, thereforg¢heir value depends on the reference
position in which it is located. Unfortunately, the reference position information is not available, which
made it difficult to normalize the values metrica_1.
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